Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I - IV

Guidelines & Syllabus

DEPARTMENT OF MATHEMATICS

2023-2026 (With effect from the academic year 2024-2025)

Issued from THE DEANS' OFFICE

Programme Educational	Objectives	(PEOs)
------------------------------	------------	--------

POs	Upon completion of M. Sc. Degree Programme, the graduates will be able to:	Mapping with Mission
PEO1	apply scientific and computational technology to solve social and ecological issues and pursue research.	M1, M2
PEO2	continue to learn and advance their career in industry both in private and public sectors.	M4 & M5
PEO3	develop leadership, teamwork, and professional abilities to become a more cultured and civilized person and to tackle the challenges in serving the country.	M2, M5 & M6

Programme Outcomes (POs)

Pos	Upon completion of M.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2
PO2	carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication.	PEO1, PEO2 & PEO3
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO2
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO2
PO5	through active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO2
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO2 & PEO3
PO7	learn independently for lifelong executing professional, social and ethical responsibilities leading to sustainable development.	PEO3

Programme Specific Outcomes (PSOs)

PSO	Upon completion of M.Sc. Degree Programme, the graduates of Mathematics will be able to:	PO Addressed
PSO-1	acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics	PO1 & PO2
PSO-2	understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.	PO3 & PO5
PSO-3	prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions	PO6
PSO-4	pursue scientific research and develop new findings with global Impact using latest technologies.	PO4 & PO7
PSO-5	possess leadership, teamwork and professional skills, enabling them to become cultured and civilized individuals capable of effectively overcoming challenges in both private and public sectors.	PO5 & PO7

SEMESTER I ELECTIVE COURSE I: a) NUMBER THEORY AND CRYPTOGRAPHY

Course Code	т	Ŧ	р	G	Credita	Inst Houng	Total	al Marks					
Course Code	L	I	r	3	Creans	Inst. Hours	Hours	CIA	External	Total			
MP231EC1	4	1	-	-	3	5	75	25	75	100			

Pre-requisite:

Students should know the basic concepts of Number Theory.

Learning Objectives:

- 1. To gain deep knowledge about Number theory.
- 2. To know the concepts of Cryptography.

Course Outcomes

On the s	On the successful completion of the course, student will be able to:						
1	understand quadratic and power series forms and Jacobi symbol.	K1 & K2					
2	apply binary quadratic forms for the decomposition of a number into sum of sequences.	К3					
3	determine solutions using Arithmetic Functions.	K3					
4	calculate the possible partitions of a given number and draw Ferrer's graph.	K4					
5	identify the public key using Cryptography.	K5 & K6					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Units		Contents	No. of Hours							
	Divisibi	Divisibility and Euclidean algorithm - Congruences, Euler's theorem,								
Ι	Wilson'	s Theorem, Chinese Remainder Theorem, Primitive roots	15							
	Chapte	r 1: 1.2, Chapter 2: 2.1,2.3,2.8								
	Quadratic Residues – Quadratic Reciprocity – The Jacobi Symbol.									
п	Chapter	r 3: 3.1, 3.2, 3.3								
	Arithme	tic functions – The Mobius Inversion Formula – Multiplication of	15							
III	arithmet	ic functions.								
	Chapter 4: 4.2, 4.3									
	Linear I	Diophantine equations – Sum of Four and Five Squares – Sum of	15							
IV	Fourth Powers - Sum of Two Squares.									
	Chapter 5: 5.1,5.3 ,5.4									
	Public I	Key Cryptography	15							
V	Public key Cryptography – Concepts of public key Cryptography – Modular									
	arithmetic – RSA – Discrete logarithm – Elliptic curve Cryptography									
	Text book 2. Chapter 4: 4.1, 4.2, 4.3 Chapter 6: 6.1, 6.2									
	Total		75							
Self Stu	f Study Arithmetic functions									

Textbooks

- 1. Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery (2006). *An Introduction to the Theory of Numbers*. United States: John Wiley & Sons.
- **2.** Neal Koblitz (1987). *A Course in Number Theory and Cryptography*. NewYork: Springer.

Reference Books

- 1. Hardy, G. H., & Wright E. M. (1975). *An Introduction to the Theory of Number*. United States: Oxford at the Clarendon Press.
- David M. Burton (1989). *Elementary Number Theory*. Dubuque, Iowa: Wm. C. Brown Publishers
- 3. Tom. M. Apostol.(1998). *Introduction to Analytic Number Theory*. N e w D e l h i : Narosa Publishing House.
- 4. Graham Everest and ThomasWard(2008).*An Introduction to NumberTheory*. NewYork: Springer.
- 5. Kenneth Ireland and Michael Rosen (1990). *A classical Introduction to Modern Number Theory*. NewYork: Springer.

Web Resources

- 1. https://youtu.be/PkpFBK3wGJc
- 2. https://youtu.be/mIStB5X4U8M?list=PL-BD05SCClbag8KTPzaPzzggJ96aBsVkT
- 3. https://ejionascu.ro/notes/ntbook.pdf
- 4. https://cse.buffalo.edu/~xinhe/cse191/Classnotes/note07-1x2.pdf
- 5. https://www.maths.dur.ac.uk/users/athanasios.bouganis/entc1415/lecture_notes.pdf

AND PROGRAMME SPECIFIC OUTCOMES											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	3	3	3	3	3
CO2	3	3	3	2	2	3	2	3	3	3	3
CO3	3	3	2	2	2	2	3	3	3	3	3
CO4	3	3	2	2	2	2	3	3	3	3	2
CO5	3	3	3	3	2	3	2	3	3	3	3
TOTAL	15	15	12	11	11	12	13	15	15	15	14
AVERAGE	3	3	2.4	2.2	2.2	2.4	2.6	3	3	3	2.8

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

^{3 –} Strong, 2- Medium, 1- Low

SEMESTER II

ELECTIVE COURSE III: a) MATHEMATICAL STATISTICS

Course Code	т	т	р	G	Credita	Inst Houng	Total	Marks		
Course Code	L	I	r	3	Creans	mst. nours	Hours	CIA	External	Total
MP232EC1	3	1	-	-	3	4	60	25	75	100

Pre-requisite

Knowledge in Probability Theory and Statistics

Learning Objectives

- 1. To enhance knowledge in mathematical statistics and acquire basic knowledge about various distributions.
- 2. To understand about mathematical expectations, moment generating function technique and the Central Limit Theorem.

Course Outcomes

On the successful completion of the course, students will be able to:									
1	recall the basic probability axioms, conditional probability, random variables and								
	related concepts								
2	learn the transformation technique for finding the p.d.f of functions of random variables and use these techniques to solve related problems	K2							
3	compute marginal and conditional distributions and check the stochastic independence	K3							
4	employ the relevant concepts of analysis to determine limiting distributions of	K2							
	random variables								
5	design probability models to deal with real world problems and solve problems involving probabilistic situations.	K 3							

K1 - Remember; K2 - Understand; K3– Apply

Units	Contents	No. of
		Hours
Ι	Distributions of Functions of Random Variables – Sampling Theory – Transformations of Variables of the Discrete Type – Transformations of Variables of the Continuous Type – The t and F Distributions Chapter 4: $4.1 - 4.4$	12
II	Limiting Distributions – Stochastic Convergence – Limiting Moment Generating Functions – The Central Limit Theorem Chapter 5: 5.1 – 5.4	12
III	Estimation – Point Estimation – Measures of Quality of Estimators – Confidence Intervals for Means – Confidence Interval for Difference of Means – Confidence Interval for Variances Chapter 6: 6.1 – 6.5	12
IV	Statistical Hypothesis – Some Examples and Definitions – Certain Best Tests – Uniformly Most Powerful Tests – Likelihood Ratio Tests Chapter 7: 7.1 – 7.4	12
V	Other Statistical Tests – Chi-Square Tests – The Distributions of Certain Quadratic Forms – A Test of Equality of Several Means – Noncentral χ^2 and Noncentral F Chapter 8: 8.1 – 8.4	12

Total	60

Self-study	Sampling Theory
Textbook	

Robert V. Hogg and Allen T. Craig, 1978. *Introduction to Mathematical Statistics*, Fourth Edition, New York: Macmillan Publishing Co

Reference Books

1.Kapur, J.N., and Saxena, H.C, 2010. *Mathematical Statistics*, 12thEdition, S. Chand & Co. 2.KadarkaraiThangam, K., and Subas Chandra Bose. A, 1995. *Probability and*

Statistics, 1stEdition, Jeyalakshmi Publishers.

3. Morris H. DeGroot, 1975. *Probability and Statistics*, Addison Wesley Publishing Company.

4.Suddhendu Biswass.,and Sriwastav, G.L, 2011. *Mathematical Statistics*, Narosa Publishing House.

5. Murthy, T.S.R, 1995. *Probability and Statistics*, 1stEdition, I.K. International Publishing House.

Web Resources

1. https://onlinecourses.nptel.ac.in/noc21_ma74/preview_

2. https://users.encs.concordia.ca/~doedel/courses/comp-233/slides.pdf

3. https://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

4. http://www.uop.edu.pk/ocontents/Book.pdf

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	3	3	3	1	2	3	1	2	3
CO2	3	2	3	2	2	2	3	2	2	3	2	3
CO3	3	3	2	2	3	3	3	2	2	3	3	2
CO4	3	3	2	3	2	2	3	3	2	3	3	2
CO5	2	2	3	3	3	2	2	2	2	2	2	3
TOTAL	12	12	13	13	14	12	12	11	11	12	12	13
AVERAGE	2	2	2	3	3	2	2	2	2	2	2	3

3 – Strong, 2- Medium, 1- Low

SEMESTER – II

ELECTIVE COURSE III: b) STATISTICAL DATA ANALYSIS USING R PROGRAMMING

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total Hours	Marks		
								CIA	External	Total
MP232EC2	4	-	-	-	3	4	60	25	75	100

Pre-requisite:

Students should know basic skills of computer.

Learning Objectives:

- 1. The basics of statistical computing and data analysis.
- 2. How to use R for analytical programming.

Course Outcomes

On the su	On the successful completion of the course, students will be able to:					
1.	recall R and its development history	K1				
2.	demonstrate how to import and export data with R	K2 & K4				
3.	explain discrete distributions	K3				
4.	apply various concepts to write programs in R	K3 & K5				
5.	apply estimation concepts in R programming	K2 & K3				

K1 - Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

Units	Contents	No. of Hours
Ι	Statistical Software R - R and its development history – Structure of R - installation of R Chapter 1: 1.1, 1.2, 1.3	12
II	Descriptive Statistics – BasicsExcursus:Data Import andExport with R – Import of ICU-DatasetChapter 2: 2.1, 2.2, 2.3	12
III	Colors and Diagrams – Colors - Excursus: Export of diagrams - Diagrams Chapter 3: 3.1, 3.2, 3.3	12
IV	Probability Distributions – Discrete Distributions – Continuous Distributions Chapter 4: 4.1 and 4.2	12
V	Estimation – Introduction – Point Estimation Chapter 5: 5.1 and 5.2	12
	Total	60

Self-study	R and its development history

Textbook

1. Matthias Kohl, 2015. *Introduction to statistical data analysis with R*, (First edition), bookboon.com, The e Book company.

Reference Books

- 1. Torsten Hothorn, Brian Everitt S, 2014. *A Handbook of Statistical Analyses using R*, (Third edition), CRC PRESS, Taylor & Francis Group
- **2.** Purohit S.G., Gore S.D., and Deshmukh S.R., 2015. *Statistics using R*, (Second edition), Narosa Publishing House, New Delhi.
- **3.** Crawley, M. J. 2006. *Statistics An introduction using R*, (Second edition), John Wiley, London 32.
- **4.** Verzani J, 2005. *Using R for Introductory Statistics*, (Second edition), Chapman and Hall /CRC Press, New York
- **5.** Braun W. J., and Murdoch D. J, 2021. *A First Course in Statistical Programming with R*, (Third edition), Cambridge University Press, New York.
- 6. Dalgaard P, 2008. Introductory Statistics with R, (Second edition), Springer.
- 7. Gardener M, 2012. Beginning R: The Statistical Programming Language, Wiley Publications.

Web Resources

- 1. https://www.udemy.com/course/statistics-using-r/
- 2. https://sims.strathmore.edu/executive-education/r-programming/
- 3. https://www.educba.com/statistical-analysis-with-r/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3	2	3	3	3	2	3	2
CO2	3	3	2	2	2	3	2	3	3	2	3	2
CO3	3	3	2	2	2	2	3	3	3	3	3	2
CO4	3	3	2	2	2	2	3	3	3	3	2	2
CO5	3	3	2	3	2	3	2	3	3	2	3	2
TOTAL	15	15	10	11	11	12	13	15	15	12	14	10
AVERAGE	3	3	2	2.2	2.2	2.4	2.6	3	3	2.4	2.8	2

3 - Strong, 2- Medium, 1- Low

SEMESTER II

Course Code	т	т	р	G	Credita	Inst Houng	Total			
Course Code	L	I	r	3	Creans	Ilist. Hours	Hours	CIA	External	Total
MP232EC4	3	1	-	-	3	4	60	25	75	100

Pre-requisite

Knowledge of probability distributions and statistics

Learning Objectives

1. To analyze different situations in the industrial/ business scenario involving limited resources

2. To finding the optimal solution within constraints.

Course Outcomes

On the s	On the successful completion of the course, students will be able to:					
1	build and solve Transportation and Assignment problems using	K1				
	appropriate method					
2	learn the constructions of network and optimal scheduling using CPM	K2				
	and PERT					
3	ability to construct linear integer programming models and solve linear	K3				
	integer programming models using branch and bound method					
4	understand the need of inventory management.	K2				
5	understand basic characteristic features of a queuing system and acquire	K3				
	skills in analyzing queuing models					

K1 - Remember; **K2** - Understand; **K3** - Apply

Units	Contents	No. of
		Hours
	Transportation Models and its Variants: Definition of the	
Ι	Transportation Model – Non-Traditional Transportation Model–	12
	Transportation Algorithm – The Assignment Model.	
	Chapter 5: Sections 5.1, 5.2, 5.3, 5.4. Exercise problems.	
	Network Analysis: Network Definitions–Minimal Spanning Tree	
II	Algorithm – Shortest Route Problem–Maximum Flow Model – CPM –	12
	PE <mark>RT</mark> .	
	Chapter 6: Sections 6.2, 6.3, 6.4, 6.5, 6.7. Exercise problems.	
	Inventory Theory: Basic Elements of an Inventory Model –	
III	Deterministic Models: Single Item Stock Model with and without Price	12
	Breaks –Multiple Items Stock Model with Storage Limitations	
	Chapter11–Sections11.1,11.2,11.3,	
117	Probabilistic Models: Continuous Review Model- Single Period	10
IV	Models.	12
	Chapter16–Sections16.1, 16.2, 16.3, Exercise problems.	

	Queuing Theory: Basic Elements of Queuing Model –Role of Poisson										
	and Exponential Distributions– Pure Birth and Death Models –	10									
V	Specialised Poisson Queues-(M/G/1):GD/∞/∞)- Pollaczek -	12									
	Khintechine Formula.										
	Chapter 17: Sections 17.2, 17.3, 17.4, 17.6, 17.7. Exercise problems.										
	Total	60									

Self-study Exercise Problems

Textbooks

1. Hamdy A.Taha, *OperationsResearch*(SixthEdition), Prentice Hall of India Private Limited, New Delhi.

2. HamdyA.Taha, *OperationsResearch*(Third Edition), Prentice Hall of India Private Limited, New Delhi.

Reference Books

- 1. Pathak, H.K, Dr. Pradeep, K. Joshi and C.Sharma, Shree *Operations Research*, Shiksha Sahitya Prakashan Publication, Reprint2022-23.
- 2. Srinivasan G, *Operations Research : Principles and Applications*, Second Edition, Easrern Economy Edition, PHI.
- 3. Hamdy A. Taha, *Operations Research* (seventh Edition) Prentice Hall of India Private Limited, New Delhi.
- 4. Kanti Swarup, P.K. Gupta and Man Mohan, *Operations Research*, 13th edition, Sultan. Chand and Sons, 2007.
- 5. R.K. Gupta, Operations Research, Krishna Prakashan Media, 1992.

Web Resources

1.https://en.wikipedia.org/wiki/Operations_ research

2.https://www.techtarget.com/whatis/definition/operations-research-OR

- 3.https://www.britannica.com/topic/operations-research
- 4.https://www.springer.com/journal/12351
- 5.https://www.or.ncsu.edu/about/what-is-operations-research/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	3	3	3	1	2	3	1	2	3
CO2	3	2	3	3	2	2	3	2	2	3	2	3
CO3	3	3	2	2	3	3	3	2	2	3	3	2
CO4	3	3	2	3	2	2	3	3	2	3	3	2
CO5	2	2	3	3	3	2	2	2	3	2	2	3
TOTAL	12	12	13	14	14	12	12	11	12	12	12	13
AVERAGE	2	2	2	3	3	2	2	2	2	2	2	3

3 – Strong, 2- Medium, 1- Low

ontent Addressing Professional Ethics
ontent Addressing Environmental Sustainability