Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I & II

Guidelines & Syllabus

DEPARTMENT OF MATHEMATICS

2023-2026 (With effect from the academic year 2023-2024)

Issued from THE DEANS' OFFICE

Vision

To empower women globally competent with human values and ethics acquiring academic and entrepreneurship skills through holistic education.

Mission

- 1. To create opportunities which will ensure academic excellence in critical thinking, humanistic and scientific inquiry.
- 2. To develop application-oriented courses with the necessary input of values.
- 3. To create a possible environment for innovation, team spirit and entrepreneurial leadership.
- 4. To form young women of competence, commitment and compassion.

PEOs	Upon completion of B.Sc. degree programme, the	Mission
	graduates will be able to	addressed
PEO 1	apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise.	M1& M2
PEO 2	inculcate practical knowledge for developing professional empowerment and entrepreneurship and societal services.	M2, M3, M4 & M5
PEO 3	pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards.	M3, M4, M5 & M6

Programme Educational Objectives (PEOs)

Programme Outcomes (POs)

POs	Upon completion of B.Sc. Degree Programme, the	PEOs
	graduates will be able to:	Addressed
PO1	obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science.	PEO 1
PO2	create innovative ideas to enhance entrepreneurial skills for economic independence.	PEO2
PO3	reflect upon green initiatives and take responsible steps to build a sustainable environment.	PEO 2
PO4	enhance leadership qualities, team spirit and communication skills to face challenging competitive examinations for a	PEO 1&PEO 3
	better developmental career.	
PO5	communicate effectively and collaborate successfully with	PEO 2&PEO 3

	peers to become competent professionals.	
PO6	absorb ethical, moral and social values in personal and social life leading to highly cultured and civilized personality	PEO 2& PEO 3
PO7	participate in learning activities throughout life, through self-paced and self-directed learning to develop knowledge and skills.	PEO1 & PEO 3

PSO	Upon completion of B.Sc. Mathematics, the graduates will be able to:	Mapping with POs
PSO – 1	acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics.	PO1
PSO – 2	understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.	PO6
PSO - 3	apply Mathematical theories and principles accurately, precisely and effectively including higher research and extensions	PO3 &PO7
PSO – 4	prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions	PO5 &PO6
PSO – 5	create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations	PO2 &PO4

Programme Specific Outcomes (PSOs)

POs	PSO1	Mapping of PO PSO 2	PSO3	PSO4	PSO5
PO 1	S	М	М	М	М
PO 2	М	М	М	М	S
PO 3	М	М	S	М	М
PO4	М	М	М	М	S
PO5	М	М	М	S	М
PO6	М	S	М	S	М
PO7	М	М	S	М	М

Strong -S (3), Medium – M (2), Low – L (1)

Eligibility Norms for Admission

Those who seek admission to B.Sc. Mathematics must have passed the Higher Secondary Examinations conducted by the Board of Higher Secondary Examination, Tamil Nadu with Mathematics as one of the subjects or any other examination recognized and approved by the Syndicate of Manonmaniam Sundaranar University, Tirunelveli.

Duration of the Programme	: 3 Years
Medium of Instruction	: English

Passing Minimum

A minimum of 40% in the external examination and an aggregate of minimum 40% is required. There is no minimum pass mark for Continuous Internal Assessment (CIA).

	Core-Theory papers	14 x 100	1400
Core Courses	Project	1x100	100
Courses	Discipline Specific Elective Theory Papers	4 x 100	400
	Total Marks		1900
	Theory	4 x 100	400
Elective Courses			
courses	Practical	2x100	200
	Total Mar	600	
	Total Mar	ks	2500

Components of the B.Sc. Mathematics Programme

Course Structure Distribution of Hours and Credits

Curricular Courses

Course	S I	S II	S III	S IV	S V	S VI	Т	otal
							Hours	Credits
Part I – Language	6 (3)	6 (3)	6 (3)	6 (3)	-	-	24	12
Part II-English	6 (3)	6 (3)	6 (3)	6 (3)	-	-	24	12
Part-III								
Core Course	4 (4)	4 (4)	4 (4)	4 (4)	5 (4)+	6(5)+	70	61
	4 (4)	4 (4)	4 (4)	4 (4)	5 (4)+	6(4)+		
					5 (4)+	6(4)		
Core Project					5 (4)			
Elective /Discipline	6 (5)	6 (5)	6 (5)	6 (5)	4(3)	5(3)		
Specific Elective					4 (3)	5(3)	42	32
Courses								
Part IV								
Non-major Elective	2 (2)	2 (2)	-	-	-	-	4	4
Skill Enhancement	-	2 (2)	1 (1)	1 (1)	-		8	8
Course			2 (2)	2 (2)				
Foundation Course	2(2)	-	-	-	-	-	2	2
Value Education	-	-	-	-	2 (2)		2	2
						-		
Summer Internship	-	-	-	-	(2)	-	-	2
/Industrial Training								
Environmental	-	-	1	1 (2)	-	-	2	2
Studies								
Extension activity	-	-	-	-	-	(1)	-	1
Professional						2 (2)	2	2
Competency Skill								
Total	30 (23)	30 (23)	30 (22)	30 (24)	30 (26)	30 (22)	180	140

Co-curricular Courses

Course	SI	S II	S III	S IV	S V	S VI	Total	
LST (Life Skill Training)	-	(1)	-	(1)			2	
Skill Development Training (Certificate Course)	(1)						1	
Field Project		(1)					1	
Specific Value-added Course	(1)		(1)				2	
Generic Value-added Course				(1)		(1)	2	
MOOC		(1)		(1)		(1)	3	
Student Training Activity: Clubs & Committees / NSS				(1)			1	
Community Engagement Activity: RUN				(1)			1	
Human Rights Education					(1)		1	
Gender Equity Studies						(1)	1	
		Total						

Total number of Compulsory Credits =Academic credits +Non-academic credits: 140 + 15

Courses Offered

Semester I

Course	Course Code	Title of the Course	Credits	Hours/Week
Part I	TU231TL1 FU231FL1	Language: Tamil French	3	6
Part II	EU231EL1	English	3	6
	MU231CC1	Core Course I: Algebra & Trigonometry	4	4
Part III	MU231CC2	Core Course II: Differential Calculus	4	4
	MU231EC1	Elective Course I: Allied Mathematics I- Algebra and Differential Equations	5	6
Part IV	MU231NM1	Non Major Elective NME I:MU231NM1Mathematics For Competitive Examinations- I		2
	MU231FC1	Foundation Course: Bridge Mathematics	2	2
		Total	23	30

Semester II

Course	Course Code	Title of the Course	Credits	Hours/Week
Part I	TU232TL1 FU232FL1	Language: Tamil French	3	6
Part II	EU232EL1	English	3	6
	MU232CC1	Core Course III: Coordinate and Spatial Geometry	4	4
Part III	MU232CC2	Core Course IV: Integral Calculus	4	4
	MU232EC1	Elective Course II: Vector Calculus and Fourier Series	5	6
	MU232NM1	Non-major Elective NME II: Mathematics For Competitive Examinations- II	2	2
Part IV	MU232SE1	Skill Enhancement Course SEC I: Introduction to Computational Mathematics	2	2
		Total	23	30

Semester III

Course	Course Code	Title of the Course	Credits	Hours/Week
Part I	TU233TL1 FU233FL1	Language: Tamil French	3	6
Part II	EU233EL1	English	3	6
	MU233CC1	Core Course V: Vector Calculus and Applications	4	4
Part III	MU233CC2	Core Course VI: Differential Equations and Applications	4	4
	MU233EC1	Elective Course III: Mathematical Statistics	5	6
	MU233SE1	Skill Enhancement Course SEC II: (Entrepreneurial Skills): E- Commerce & Tally	1	1
Part IV	MU233SE2	Skill Enhancement Course SEC III: Statistics with R Programming	2	2
	UG234EV1	Environmental Studies	-	1
		Total	22	30

Semester IV

Course	Course Code	Title of the Course	Credits	Hours/Week
Part I	TU234TL1 FU234FL1	Language: Tamil French	3	6
Part II	EU234EL1	English	3	6
	MU234CC1	Core Course VII: Industry Module – Industrial Statistics	4	4
Part III	MU234CC2	Core Course VIII: Elements of Mathematical Analysis	4	4
	MU234EC1	Elective Course IV: Transformation Techniques	5	6
	MU234SE1	Skill Enhancement Course SEC IV: (Entrepreneurial Skills) Computing Mathematics	1	1
Part IV	MU234SE2	Skill Enhancement Course SEC V: Introduction to Data Science	2	2
	UG234EV1	Environmental Studies	2	1
		Total	24	30

Semester V

Course	ourseCourseTitle of the CourseCode		Credits	Hours/
				Week
	MU235CC1	Core Course IX: Abstract Algebra	4	5
	MU235CC2	Core Course X: Real Analysis	4	5
	MU235CC3	Core Course XI: Mathematical Modelling	4	5
	MU235PW1	Project Work	4	5
	MU235DE1	Discipline Specific Elective I: a) Number Theory		
Dout III	MU235DE2	Discipline Specific Elective I: b) Astronomy	3	4
Part III	MU235DE3	Discipline Specific Elective I: c) Optimization Techniques		
	MU235DE4	Discipline Specific Elective II: a) Introduction to Machine Learning		
	MU235DE5	Discipline Specific Elective II: b) Introduction to Python	3	4
	MU235DE6	Discipline Specific Elective II: c) Introduction to Artificial Intelligence		
	MU235VE1	Value Education	2	2
Part IV	MU235SI1 / MU235IT1	Summer Internship/Industrial Training	2	-
		Total	26	30

Semester	VI
----------	----

Course	e Course Code Title of the Course		Credits	Hours/ Week
Part III	MU236CC1	Core Course XII: Linear Algebra	5	6
	MU236CC2	Core Course XIII: Complex Analysis	4	6
	MU236CC3	Core Course XIV: Mechanics	4	6
	MU236DE1	Discipline Specific Elective III: a) Programming Language with C++ with Practical	3	5
	MU236DE2	Discipline Specific Elective III: b) Programming Language with practical (C, Python, Java, R, etc.)		
	MU236DE3	Discipline Specific Elective III: c) Data Structures		
	MU236DE4	Discipline Specific Elective IV: a) Graph Theory and Applications	3	5
	MU236DE5	Discipline Specific Elective IV: b) Combinatorial Mathematics	•	
	MU236DE6	Discipline Specific Elective IV: c) Introduction to Research Methodology		
	MU236EA1	Extension Activity	1	-
	MU236PS1	Professional Competency Skill	2	2
		Total	22	30
		TOTAL	140	180

Co-curricular Courses

Part	Semester	Code	Title of the Course	Credit
	I & II	UG232LC1	Life Skill Training I: Catechism	1
	1 & 11	UG232LM1	Life Skill Training I: Moral	1
	Ι	UG231C01 –	Skill Development Training (SDT)	1
		UG231C	Certificate Course	1
	II	MU232FP1	Field Project	1
	I & III	MU231V01-	Specific Value-added Course	1+1
		MU231V/		
		MU233V01 –		
		MU233V		
	II, IV& VI	-	MOOC	1+1+1
	III & IV	UG234LC1	Life Skill Training II: Catechism	1
Part	III & I V	UG234LM1	Life Skill Training II: Moral	1
V				
		UG234V01-	Generic Value-added Course	
	IV & VI	UG234V/		1 +1
	1, 0, 11	UG236V01-		1 1 1
		UG236V		
	I - IV	UG234ST1	Student Training Activity – Clubs & Committees /	1
			NSS	
	IV	UG234CE1	Community Engagement Activity - RUN	1
	V	UG235HR1	Human Rights Education	1
	VI	UG236GS1	Gender Equity Studies	1
			Total	15

Specific Value-added Course

	S. No.	Course code	Title of the course	Total hours
ſ	Ι	MU231V01	Web Designing using HTML	30

Examination Pattern

Each paper carries an internal component.

There is a passing minimum for external component.

A minimum of 40% in the external examination and an aggregate of 40% is required.

a. Part I – Tamil, Part II – English, Part III - (Core Course/ Elective Course) Ratio of Internal and External= 25:75

Continuous Internal Assessment (CIA)

Internal Components and Distribution of Marks

Components	Marks
Internal test (2) (40 marks)	10
Quiz (2) (20 marks)	5
Assignment: (Model Making, Exhibition, Role Play, Seminar, Group Discussion, Problem Solving, Class Test, Open Book Test etc. (Minimum three items per course should be included in the syllabus & teaching plan) (30 marks)	10
Total	25

Question Pattern

Internal Test	Marks	External Exam	Marks
Part A 4 x 1(No choice)	4	Part A 10 x 1 (No choice)	10
Part B 3 x 4(Internal	12	Part B 5 x 6 (Internal choice)	30
choice)			
Part C 3 x 8 (Internal	24	Part C 5 x 12(Internal choice)	60
choice)			
Total	40	Total	100

Lab Course:

Ratio of Internal and External= 25:75

Total: 100 marks

Internal Components and Distribution of Marks

Internal Components	Marks
Performance of the Experiments	10
Regularity in attending practical and submission of records	5
Record	5
Model exam	5
Total	25

Question pattern

External Exam	Marks
Major Practical	
Minor Practical / Spotters /Record	75
Total	75

Core Project

Ratio of Internal and External = 25:75

Components	Marks
Internal	25
External	
Report	40
Viva voce	35

Part - IV

i. Non-major Elective, Foundation Course, Skill Enhancement Course, Value Education, Professional Competency Skill

Ratio of Internal and External = 25:75

Internal Components and Distribution of Marks

Components	Marks
Internal test (2)	10
Quiz (2)	5
Assignment: (Model Making, Exhibition, Role Play, Album, Group Activity (Mime, Skit, Song) (Minimum three items per	10
course)	
Total	25

Question Pattern

Internal Test	Marks	External Exam	Marks
Part A 2 x 2	4	Part A 5 x 2	10
(No Choice)		(No Choice)	
Part B 3 x 4 (open choice	12	Part B 5 x 5 (open choice any	25
Three out of Five)		Five out of Eight)	
Part C 1 x 9 (open choice	9	Part C 5 x 8 (open choice any	40
One out of Three)		Five out of Eight)	
Total	25	Total	75

ii. Environmental Studies

Internal Components

Component	Marks
Project Report	15
Viva voce	10
Total	25

Question Pattern

Internal Test	Marks	External Exam	Marks
Part A 2 x 2	4	Part A 5 x 2	10
(No Choice)		(No Choice)	
Part B 3 x 4	12	Part B 5 x 5	25
(Open choice Three out of		(Open choice any Five out	
Five)		of Eight)	
Part C 1 x 9	9	Part C 5 x 8	40
(Open choice One out of		(Open choice any Five out	
Three)		of Eight)	
Total	25	Total	75

iii. Summer Internship/Industrial Training

Components	Marks
Industry Contribution	50
Report & Viva-voce	50

Co-Curricular Courses:

i. Life Skill Training: Catechism & Moral, Human Rights Education & Gender Equity Studies

Internal Components

Component	Marks
Project - Album on current issues	25
Group Song/ Mime/ Skit	25
Total	50

External Components

Component	Marks
Quiz	20
Written Test: Open choice -5 out of 7 questions (5 x 6)	30
Total	50

ii. Skill Development Training (SDT) - Certificate Course:

Components		
Attendance & Participation		
Skill Test	50	

iii. Field Project:

Components	Marks
Field Work	50
Report & Viva-voce	50

iv. Specific Value-Added Courses & Generic Value-Added Courses:

Components	Marks
Internal	25
External	75

v. Community Engagement Activity: Reaching the Unreached Neighbourhood (RUN)

Components	Marks
Attendance & Participation	50
Field Project	50

vi. Student Training Activity: Clubs and Committees

Compulsory for all I & II-year students (1 credit).

Component	Marks
Attendance	25
Participation	25
Total	50

Outcome Based Education (OBE)

(i) Knowledge levels for assessment of Outcomes based on Blooms Taxonomy

S. No	Level	Parameter	Description
1	KI	Knowledge/Remembering	It is the ability to remember the previously learned
2	K2	Comprehension/Understanding	The learner explains ideas or concepts
3	K3	Application/Applying	The learner uses information in a new way
4	K4	Analysis/Analysing	The learner distinguishes among different parts
5	K5	Evaluation/Evaluating	The learner justifies a stand or decision
6	K6	Synthesis /Creating	The learner creates a new product or point of view

(ii) Weightage of K – Levels in Question Paper Number of questions for each cognitive level:

Programme	Assessment		L	owe	r Oı	der	Thi	inki	ng			Higho orde ninki	r	Total number of questions
		K1		K2		K3			K4, K5, K6					
	Part	Α	B	С	A	B	С	Α	B	С	Α	B	С	
I UG	Internal	2	2		1	1	1	1	-	2	-	-	-	10
100	External	5	2	1	3	2	2	2	1	2	-	-	-	20
II UG	Internal	1	-	1	1	2		1	-	1	1	1	1	10
1100	External	5	1	1	4	1	1	-	3	1	1	-	2	20
III UG	Internal	1	1	-	-	1	-	1	-	1	2	1	2	10

Evaluation

- i. The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade points.
- ii. Evaluation of each course shall be done by Continuous Internal Assessment (CIA) by the course teacher as well as by an end semester examination and will be consolidated at the end of the semester.
- iii. There shall be examinations at the end of each semester, for odd semesters in October/November; for even semesters in April/ May.
- iv. A candidate who does not pass the examination in any course(s) shall be permitted to reappear in such failed course(s) in the subsequent examinations to be held in October/ November or April/May. However, candidates who have arrears in practical examination shall be permitted

to reappear for their areas only along with regular practical examinations in the respective semester.

- v. Viva-voce: Each project group shall be required to appear for Viva -voce examination in defence of the project.
- vi. The results of all the examinations will be published in the college website.

Conferment of Bachelor's Degree

A candidate shall be eligible for the conferment of the Degree of Bachelor of Arts / Science / Commerce only if the minimum required credits for the programme

thereof (140 + 18 credits) is earned.

Grading System

For the Semester Examination:

Calculation of Grade Point Average for End Semester Examination:

GPA = <u>Sum of the multiplication of grade points by the credits of the course</u> Sum of the credits of the courses (passed) in a semester

For the entire programme:

Cumulative Grade Point Average (CGPA) $\Sigma_n \Sigma_i C_{ni} G_{ni} / \Sigma_{ni} \Sigma_i C_{ni}$

Sum of the credits of the courses of the entire programme

Where

- C_i Credits earned for course i in any semester
- G_i Grade point obtained for course i in any semester
- n semester in which such courses were credited

Final Result

Conversion of Marks to Grade Points and Letter Grade

Range of Marks	Grade Points	Letter Grade	Description
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	A	Good
50-59	5.0-5.9	В	Average
40-49	4.0-4.9	С	Satisfactory
00-39	0.0	U	Re-appear

ABSENT	0.0	AAA	ABSENT

Overall Performance

CGPA	Grade	Classification of Final Result
9.5-10.0	O+	First Class – Exemplary*
9.0 and above but below 9.5	0	
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class with Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	First Class
6.5 and above but below 7.0	A+	
6.0 and above but below 6.5	A	-
5.5 and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	
4.0 and above but below 5.0	С	Third Class
0.0 and above but below 4.0	U	Re-appear

*The candidates who have passed in the first appearance and within the prescribed semester are eligible for the same.

SEMESTER I

CORE COURSE I: ALGEBRA & TRIGONOMETRY

Course Code	т	т	D	G	Cradita	Inst. Hours	Total		Marks	
Course Coue	L	I	Г	3	Creans	mst. nours	Hours	CIA	External	Total
MU231CC1	4	-	-	-	4	4	60	25	75	100

Pre-requisite:

Students should know the basic concepts of Algebra & Trigonometry.

Learning Objectives:

1. To understand the basic ideas on the theory of equations, Matrices.

2. To get the knowledge to find expansions of trigonometry functions, solve theoretical and applied problems.

Course Outcomes

On the success	sful completion of the course, student will be able to:	
1.	classify and solve reciprocal equations	K2
2.	find the sum of binomial, exponential and logarithmic series	K1
3.	find eigen values, eigen vectors, verify cayley — hamilton theorem and diagonalize a given matrix	K1
4.	expand the powers and multiples of trigonometric functions in terms of sine and cosine	K2
5.	determine relationship between circular and hyperbolic functions and the summation of trigonometric series	K3

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents	No. of Hours
Ι	Reciprocal Equations-Standard form—increasing or decreasing the roots of a given equation- Removal of terms, Approximate solutions of roots of polynomials by Horner's method related problems.	12
II	Summation of Series: Binomial— Exponential —Logarithmic series (Theorems without proof) — Approximations - related problems.	12
ш	Characteristic equation — Eigen values and Eigen Vectors, Similar matrices - Cayley — Hamilton Theorem (Statement only) Finding powers of square matrix, Inverse of a square matrix up to order 3, related problems.	12
IV	Expansions of $sinn\theta$, $cosn\theta$ in powers of $sin\theta$, $cos\theta$ Expansion of $tann\theta$ in terms of $tan\theta$, Expansions of $cos^n\theta$, $sin^n\theta$, $sin^n\theta cos^n\theta$, Expansions of $tan(\theta_1 + \theta_2 + \cdots \theta_n)$ -related problems.	12
V	Hyperbolic functions — Relation between circular and hyperbolic functions Inverse hyperbolic functions, Logarithm of complex quantities-related problems.	12

	Self-study	Definitions and Formulae
--	------------	--------------------------

Text Books

- T.K. Manicavachagom Pillai, T. Natarajan and K.S.Ganapathy (2015)*Algebra, VolumeI*, Chennai, S. Viswanathan Pvt. Ltd.
- **2.** S. Arumugam and A. Thangapandi Isaac (2006). *Theory of Equations and Trigonometry* Palayamkottai: New Gamma Publishing House.

Reference Books

1. W.S. Burnstine and A. W. Panton (2016), Theory of equations, Wentworth Press.

2. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.

3. David C. Lay, (2007) *Linear Algebra and its Applications*, 3rd Ed., Pearson Education Asia, Indian Reprint.

Indian Reprint.

4. C. V. Durell and A. Robson, (2003), Advanced Trigonometry, Courier Corporation.

5. J. Stewart, L. Redlin, and S. Watson, (2012), Algebra and Trigonometry, Cengage Learning.

Web Resources

- 1. <u>https://nptel.ac.in</u>
- 2. <u>https://rodrigopacios.github.io/mrpacios/download/Thomas_Calculus.pdf</u>

3. https://www.dbraulibrary.org.in/RareBooks/An%20Introduction%20to%20the%20

Modern%20Theory%20of%20Equations.pdf

4. <u>https://pdfcoffee.com/qdownload/c-v-durell-a-robson-advanced-trigonometry-</u> 2003pdf-pdf-free.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	2	3	2	3	2	2	2	2
CO2	3	2	3	3	3	2	2	3	2	2	2	2
CO3	3	2	3	3	3	2	2	3	2	2	2	2
CO4	3	2	3	3	2	2	2	3	2	2	2	2
CO5	3	2	3	3	3	2	2	3	2	2	2	2
TOTAL	15	10	15	15	13	11	10	15	10	10	10	10
AVERAGE	3	2	3	3	2.6	2.2	2	3	2	2	2	2

3 – Strong, 2- Medium, 1- Low

	U	UK	LU	00	KSE II: D	IFFERENIL	AL CAL	CULU	0	
Course Code	т	т	D	G	Credita	Inst. Hours	Total		Marks	
Course Code	L	I	r	3	Creans	Ilist. Hours	Hours	CIA	External	Total
MU231CC2	4	-	-	-	4	4	60	25	75	100

SEMESTER I CORE COURSE II: DIFFERENTIAL CALCULUS

Pre-requisite:

Standard XII Mathematics.

Learning Objectives:

1. Basic knowledge on the notions of curvature, evolutes, involutes and polar co-ordinates,

and solving related problems.

2. The basic skills of differentiation, successive differentiation, and their applications.

	Course Outcomes	
On the suc	ccessful completion of the course, student will be able to:	
1	recall the definitions and basic concepts of Differential Calculus.	K1
-		
2	understand the concepts of Differentiation, Partial	K2
2	Differentiation, Envelope & Curvature.	
2	determine Partial derivatives of a function of two variables and	K2
3	use Lagrange's method of undetermined multipliers.	
4	distinguish between partial and ordinary differential	K3
4	equations.	
~	Find the evolutes and involutes and to find the radius of	K3
5	curvature using polar co-ordinates.	

K1 - Remember; **K2** - Understand; **K3** – Apply

Units	Contents	No. of Hours
I	Successive Differentiation Introduction (Review of basic concepts) – The n^{th} derivative – Standard results –Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula for the n^{th} derivative of a product.	12
II	Partial Differentiation Partial derivatives – Successive partial derivatives – Function of a function rule – Total differential coefficient.	12
ш	Partial Differentiation (Continued) Homogeneous functions – Partial derivatives of a function of two variables – Lagrange's method of undetermined multipliers.	12
IV	Envelope Method of finding the envelope – Another definition of envelope – Envelope of family of curves which are quadratic in the parameter.	12
V	Curvature Definition of Curvature – Circle, Radius and Centre of Curvature – Evolutes and Involutes – Radius of Curvature in Polar Co-ordinates.	12

Self Study Radius of Curvature in Polar Co-ordinates.

Text Books

- 1. Narayanan S and Manicavachagom Pillai T.K (2015). *Calculus*. Chennai: S. Viswanathan (Printers & Publications) Pvt. Ltd.
- 2. S. Arumugam and A. Thangapandi Isaac (2011). *Calculus*. Palayamkottai:New Gamma Publishing House.

Reference Books

- 1. R. Courant and F. John (1989). *Introduction to Calculus and Analysis*. New York: Springer.
- 2. T. Apostal, Calculus, Volumes I and II. John New York: Wiley & Sons.
- 3. S. Goldberg, Calculus and Mathematical Analysis
- 4. H. Anton, I. Birens and S. Davis (2002). *Calculus*.United States of America: John Wiley & Sons, Inc.
- 5. G.B. Thomas and R.L. Finney (2010). *Calculus*. Delhi:Pearson Education.
- 6. M.J. Strauss, G.L. Bradley and K. J. Smith (2007). *Calculus*. Delhi: Pearson Education.

Web Resources

- 1. <u>https://nptel.ac.in</u>
- 2. <u>https://www.uou.ac.in/sites/default/files/slm/MSCZO-501.pdf</u>
- **3.** <u>https://manoa.hawaii.edu/exploringourfluidearth/biological/invertebrates/structure-and-function</u>
- 4. <u>https://www.zoologytalks.com/category/structure-and-functions-of-invertebrates/</u>
- 5. <u>https://www.bilasagirlscollege.ac.in/newsData/D54.pdf</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	2	2	3	3	2	3	2	2	2
CO2	3	2	3	2	3	2	3	2	2	2	2	2
CO3	3	2	3	2	3	2	3	3	2	3	2	2
CO4	3	2	3	2	2	2	3	2	2	2	2	2
CO5	3	2	3	2	3	3	3	3	2	3	2	2
TOTAL	15	10	15	10	13	12	15	12	11	12	10	10
AVERAGE	3	2	3	2	2.6	2.4	3	2.4	2.2	2.4	2	2

3 – Strong, 2- Medium, 1- Low

SEMESTER I ELECTIVE COURSE I: ALLIED MATHEMATICS-I ALGEBRA AND DIFFERENTIAL EQUATIONS

Course	L	Т	Р	Credits	Inst.	Total		Marks	
Code		_	-	cicults	Hours	Hours	CIA	External	Total
MU231EC1	5	1	-	5	6	90	25	75	100

Pre-requisite:

Students should know the basic concepts of Algebra & Trigonometry.

Learning Objectives:

1. To understand the basic ideas on the theory of equations, Matrices.

2. To get the knowledge to find expansions of trigonometry functions, solve theoretical and

applied problems

Course Outcomes

On the s	uccessful completion of the course, student will be able to:	
1	recall the methods of finding the solutions of algebraic equations, differential equations and various formulae of laplace transform	K1
2	understand the theory of algebraic equations, eigen values, differential equations and laplace transform	K2
3	simplify algebraic expressions using various methods, find eigen values, solve initial value problems for odes and find inverse laplace transform	K2
4	analyse various types of first-order odes, relate laplace transform and inverse laplace transform and formulate algebraic equations from real world problems.	K4

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze;

Units	Contents	No. of Hours							
I	Theory of Equations – Formation of Equations – Relation between roots and coefficients–Reciprocal equations.								
II	Transformation of Equations–Approximate solutions to equations – Newton's method and Horner's method.	18							
III	Matrices–Characteristic equation of a matrix –Eigen values and Eigen vectors – Cayley Hamilton theorem and simple Problems.								
IV	Differential equation of first order but of higher degree – Equationssolvableforp,x,y–Partial differential equations–formations– solutions – Standard form Pp+Qq=R.	18							
V	Laplace transformation–Inverse Laplace transform.	18							

Self study	Definitions and Formulae

Text Book

Dr.S. Arumugam & Isaac–Allied Mathematics Paper-I, New Gamma Publishing House (2012), PalayamKottai.

Reference Books

- 1. 1 Narayanan.S and T.K. Manikavachagam Pillai-Differential Equations and its applications, S.Viswanathan Printers Pvt.Ltd,2006.
- 2. T.Veerarajan-AlgebraandTrigonometry-YesDeePublishing Pvt.Ltd.,(2009)

Web Resources

1. https://nptel.ac.in

2. https://ocw.mit.edu/courses/res-18-009-learn-differential-equations-up-close-with-gilbert-

strang-and-cleve-moler-fall-2015/pages/differential-equations-and-linear-algebra/

3.https://www.khanacademy.org/math/differential-equations

4.<u>https://www.khanacademy.org/math/differential-equations</u>

5. https://en.wikipedia.org/wiki/Algebraic_differential_equation

MAPPING WITH PROGRAMME OUTCOMES

PO5 PO6 PO7 PSO1 PSO2 PSO3 PSO4 PSO5 PO1 | PO2 | PO3 | PO4 | **CO1 CO2 CO3 CO4** TOTAL AVERAGE 2.2 2.6

AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER – I

NON-MAJOR ELECTIVE NME - I

MATHEMATICS FOR COMPETITIVE EXAMINATIONS I

Course Code	т	т	р	c	Credita	Inst Hound	Total		Marks	
Course Code	L	I	r	3	Creans	mst. nours	Hours	CIA	External	Total
MU231NM1	2	-	-	-	2	2	30	25	75	100

Pre-requisite:

Students should have basic knowledge on Mathematical calculations.

Learning Objectives:

- 1. To understand the problems asked in various competitive examinations and identify the method to solve them.
- 2. To develop numerical aptitude by practicing different types problems.

	Course Outcomes	
On the s	uccessful completion of the course, student will be able to:	
1	understand the problems and remember the methods to solve problems.	K1 & K2
2	grasp the simplest method to solve problems.	K2
3	apply suitable mathematical method and get solutions to simple real life problems.	K3

Course Outcomes

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents	No. of Hours
Ι	 Simplification: BODMAS rule – Using basic formulae – Problems with sets. Averages: Finding average income, average expenditure, average age, average speed and average score. (Chapter 4 and Chapter 6). 	6
II	Ratio and proportion: Comparison of two ratios – Compounded Ratio – Mean, Third and Fourth Proportional – Real life problems (Chapter 13)	6
ш	Percentages : Percentage on numbers – Population – Depreciation. Partnership: Ratio of division of gains – Investments made in same time and Investments made in different time. (Chapter 11 and Chapter 14).	6
IV	Profit and Loss: Gain – Loss –Selling similar items – Problems on trader professes to sell his goods. (Chapter 12).	6
v	Problems on numbers: Framing and solving equations involving unknown numbers - Problems involving ratios and fractions. (Chapter 7).	6

Self study	Percentages
------------	-------------

Text Book:

Aggarwal, R.S (2017). *Quantitative Aptitude* (Revised Edition). S. Chand and Company LTD.

Reference Books

- Guha, A. 2011. Quantitative Aptitude for Competitive Examinations (4^{□h}Edition). Published by McGraw Hill Education (India) Pvt. Ltd.
- 2. Aggarwal, R.S (2022). *Quantitative Aptitude* (Revised Edition). S. Chand and Company LTD.
- 3. Arun Sharma. 2008. *Objective Mathematics* (2^{□□} Edition). Tata McGraw-Hill Publishing Company Limited.
- 4. Chauhan, R.S. 2011. Objective Mathematics. Unique Publisher.
- 5. Goyal, J. K. Gupta, K. P. 2011. *Objective Mathematics* ($6^{\Box h}$ Revised Edition). Pragati Prakashan Educational Publishers.
- 6. Immaculate, M. (2009). Mathematics for Life. Nanjil offset Printers.

Web Resources

- 1. <u>Simplification Shortcuts & Tricks for Placement Tests</u>, Job Interviews & Exams <u>YouTube</u>
- 2. <u>Averages Shortcuts & Tricks for Placement Tests</u>, Job Interviews & Exams <u>YouTube</u>
- 3. <u>Percentage Shortcuts & Tricks for Placement Tests, Job Interviews & Exams -</u> <u>YouTube</u>
- 4. <u>Partnership Shortcuts & Tricks for Placement Tests</u>, Job Interviews & Exams <u>YouTube</u>
 - 5. <u>Aptitude Made Easy Profit & Loss Basics and Methods, Profit and loss</u> <u>shortcuts, Math tricks - YouTube</u>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	1	3	3	1	3	3	3	2	3	3
CO2	2	3	1	3	3	2	3	3	3	2	3	3
CO3	2	3	1	3	3	2	3	3	3	3	3	3
TOTAL	6	9	3	9	9	5	9	9	9	7	9	9
AVERAGE	2	3	1	3	3	1.6	3	3	3	2.3	3	3

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER – I

FOUNDATION COURSE - BRIDGE MATHEMATICS

Course Code	т	т	р	S	Cradita	Inst Houng	Total	Marks			
	L	I	Г		Creans	mst. nours	Hours	CIA	External	Total	
MU231FC1	2	-	-		2	2	30	25	75	100	

Pre-requisite:

Students should know 12th Standard Mathematics.

Learning Objectives:

- 1. To bridge the gap and facilitate transition from higher secondary to tertiary education.
- 2. To instill confidence among stakeholders and inculcate interest for Mathematics.

Course Outcomes On the successful completion of the course, student will be able to: 1 K2 & K3 prove the binomial theorem and apply it to find the expansions of any $(x + y)^n$ and also, solve the related problems. K1 &K3 find the various sequences and series and solve the problems related 2 to them. Explain the principle of counting. K2 & K3 find the number of permutations and combinations in different 3 cases. Apply the principle of counting to solve the problems on permutations and combinations. K2 & K3 explain various trigonometric ratios and find them for different angles, including sum of the angles, multiple and submultiple 4 angles, etc. Also, they can solve the problems using the transformations. **K3** find the limit and derivative of a function at a point, the definite 5 and indefinite integral of a function. Find the points of min/max of a function.

K1-RememberK2- Understand K3 - Apply

Units	Contents	No. of Hours
I	Algebra Binomial theorem, General term, middle term, problems based on these concepts	6
п	Analysis Sequences and series (Progressions). Fundamental principle of counting. Factorial n.	6
ш	Combinatorics Permutations and combinations, Derivation of formulae and their connections, simple applications, combinations with repetitions, arrangements within groups, formation of groups.	6
IV	Trigonometry Introduction to trigonometric ratios, proof of sin(A+B), cos(A+B), tan(A+B) formulae, multiple and sub multiple angles, sin(2A), cos(2A),	6

	tan(2A) etc., transformations sum into product and product into sum formulae, inverse trigonometric functions, sine rule and cosine rule	
V	Calculus Limits, standard formulae and problems, differentiation, first principle, uv rule, u/v rule, methods of differentiation, application of derivatives, integration - product rule and substitution method.	6

Self Study Definitions, Formulae, Applications

Text books

- 1. NCERT class XI and XII text books
- 2. Any State Board Mathematics text books of class XI and XII

Web Resources

- 1. <u>h</u> tps://nptel.ac.in
- 2. <u>h</u> tps://www.khanacademy.org/
- 3. <u>h</u> tps://www.bytelearn.com/
- 4. <u><u>h</u> tps://mathworld.wolfram.com/</u>
- 5. <u>h</u> tps://byjus.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	1	1	1	2	1	2	2	2	2	1	1
CO2	2	1	1	1	2	1	2	2	2	2	1	1
CO3	2	1	1	1	2	1	2	2	2	2	1	1
CO4	2	1	1	2	2	1	2	1	2	1	1	2
CO5	2	1	1	2	2	1	2	2	1	1	2	2
TOTAL	10	5	5	7	12	5	10	9	9	8	6	7
AVERAGE	2	1	1	1.4	2	1	2	1.8	1.8	1.6	1.2	1.4

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 - Strong, 2- Medium, 1- Low

SEMESTER – I

SPECIFIC VALUE-ADDED COURSE –WEB DESIGNING USING HTML

Course Code	Credit	Total Hours	Total Marks
MU231V01	1	30	100

Pre-requisite:

Basic knowledge of Matrices and Programming languages.

Learning Objectives:

- 1. To understand the importance of the web as a medium of communication.
- 2. To create an effective web page with graphic design principles.

Course Outcomes

On the su	accessful completion of the course, student will be able to:	
1	define modern protocols and systems used on the web (such as HTML, HTTP)	K2
2	employ fundamental knowledge on web designing with makeup language	K3
3	gain strong knowledge in HTML	K2
4	use critical thinking skills to design and implement an interactive website with regard to issues of usability, accessibility and internationalism	K4
5	to pursue future courses in website development and design	K3

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

Units	Contents	No. of Hours
I	Introduction to HTML – Designing a Home Page-History of HTML – HTML Generations –HTML Documents – Anchor Tag – Hyper Links –Sample HTML Documents.	6
II	Head and Body Sections – Header Sections – Title –Prologue – Links – Colorful Web Page – Comment Lines – Some Sample HTML Documents.	6
III	Designing the Body Section- Heading Printing-Aligning the Headings – Horizontal Rule – Paragraph – Tab Setting -Images and Pictures-Embedding PNG Format Images.	6
IV	Ordered and Unordered Lists – Lists – Unordered Lists –Headings in a List – Ordered Lists-Nested Lists.	6
v	Table Handling -Tables -Table Creation in HTML - Width of the Table and Cells-Cells Spanning Multiple Row/Columns Coloring Cells - Column Specification – Some Sample Tables.	6

Self study Sample HTML Documents

Text book

Xavier, C. World Wide Web Design with HTML.T ata Mc gram Hill

Publishing Company Limited.

Chapters 4: Sections: 4.1-4.7Chapters5: Sections: 5.1-5.7; Chapters6: Sections: 6.1-6.7; Chapters7: Sections: 7.1-7.5;

Chapters 8: Sections: 8.1 - 8.7

Reference Books:

- 1. Castro., Elizabeth., & Hyslop.(2013).HTML5,AndCSS:VisualQuick start Guide.(Eight Edition). Peach pit Press.
- 2. Devlin., &Ian. (2011).HTML5Multimedia: DevelopAndDesign.PeachpitPress.
- Felke., & Morris.(2013). Basics of Web Design: HTML5 &CSS3.(2nd Edition).Addition-Wesley.
- Felke., & Morris. (2014). -Web Development & Design FoundationsWithHTML5.(7th Edition). Addition-Wesley.
- John Duckett. (2011).HTML and CSS: Design and 1st BuildWebsite. (Edition).John Wiley and sons.

Web Resources

- 1. https://www.computerhope.com/starthtm.htm
- 2. https://www.geeksforgeeks.org/design-a-web-page-using-html
- 3. <u>https://www.youtube.com/watch?v=PgAZ8KzfhO8</u>
- 4. <u>https://www.youtube.com/watch?v=qXXknB5bePU</u>
- 5. <u>https://www.digitalocean.com/community/tutorial_series/how-to-build-a-website-with-html</u>

		11112		OIL.				2001				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	2	3	2	3	2	2	3	2
CO2	3	3	2	2	3	2	2	3	2	2	3	2
CO3	3	3	2	3	2	2	2	3	2	3	3	2
CO4	3	3	2	2	2	3	2	3	2	2	3	2
CO5	3	3	3	3	3	2	2	3	2	3	3	3
TOTAL	15	15	11	12	12	12	10	15	10	12	15	11
AVERAGE	3	3	2.2	2.4	2.4	2.4	2	3	2	2.4	3	2.2

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER II

CORE COURSE III: COORDINATEANDSPATIALGEOMETRY

Course Code	L	Т	Р	s	Credits	Inst. Hours	Total		Marl	KS
		-	-				Hours	CIA	External	Total
MU232CC1	4	-	-	-	4	4	60	25	75	100

Pre-requisite

Familiarity with algebraic expressions, equations, and solving for variables, basic geometry concepts and knowledge of trigonometry

Learning Objectives

- 1. To analyze characteristics and properties of two and three dimensional geometric shapes.
- 2. To develop mathematical arguments about geometric relationships.
- 3. To solve real world problems on geometry and its applications.

Course Outcomes

On the su	ccessful completion of the course, students will be able to:	
1.	recall the definitions and formulae of key concepts in coordinate and spatial geometry	K1
2.	describe the relationships between geometric shapes and their equations and summarize the properties of different transformations on the coordinate plane	K2
3.	solve real world problems involving lines, planes and spheres using analytical geometry concepts	К3
4.	analyze the properties of equations of lines, planes and spheres	K4
5.	evaluate complex problems that require the application of coordinate and spatial geometry concepts.	K5

K1 - Remember; K2 - Understand; K3– ApplyK4– AnalyzeK5–Evaluate

Units	Contents	No. of Hours
I	Pole, Polar - Conjugate Points and Conjugate Lines – Diameters – Conjugate Diameters of an Ellipse - Semi Diameters- Conjugate Diameters of Hyperbola. Chapter 7: 7.1 - 7.3; Chapter 8:8.1 - 8.5	12
п	Polar Coordinates - General Polar Equation of Straight Line – Polar Equation of a Circle, Equation of a Straight Line, Circle, Conic – Equation of Chord, Tangent, Normal - Equations of the Asymptotes of a Hyperbola. Chapter 10 : 10.1 - 10.8	12
III	System of Planes - Length of the Perpendicular – Orthogonal Projection Chapter 2: 2.1 - 2.10	12
IV	Representation of Line – Angle Between a Line and a Plane – Co- planar Lines – Shortest Distance between two Skew Lines – Length of the Perpendicular – Intersection of three Planes. Chapter 3: 3.1 - 3.8.	12
V	Equation of a Sphere - General Equation - Section of a Sphere by a	12

Plane - Equ	ation of the Circle - Tangent Plane - Angle of
Intersection of	f two Spheres - Condition for the Orthogonality -
Radical Plane	
Chapter 6 : 6.	<mark>l - 6.8</mark>

Self-	Co-planar Lines, Shortest distance between two Skew Lines, Length of the
study	Perpendicular, Intersection of three Planes

Text Books

- 1. Durai Pandian P, Analytical Geometry of 2D, 2012, Muhil publishers (Unit 1 &2)
- 2. Shanthi Narayan and Mittal P. K, *Analytical Solid Geometry of 3D*, Uttar Pradesh: S Chand and Co. Pvt. Ltd. (Unit 3 5)

Reference Books

- 1. Loney S. L., 2023.*The elements of Coordinate Geometry*, (7nth Edition), ArihantPrakashan, Meerut.
- 2. Jain P. K and Khali Ahmed, 2021. *Textbook of Analytical Geometry of Two Dimensions*, (3rd Edition), New Age International Pvt. Ltd.
- 3. William F. Osgood and William C. Graustein, 2016. *Plane and Solid Analytic Geometry*, Macmillan Company, New York
- 4. Utpal Chatterjee and Nandini Chatterjee, 2016. *Advanced Analytical Geometry of Two and Three Dimensions*, Academic Publishers.
- 5. Vittal P. R., 2013. *Analytical Geometry 2D and 3D*, (1st Edition) Pearson Education, India.

Web Resources

- 1. http://mathworld.wolfram.com
- 2. <u>https://nptel.ac.in</u>
- 3. http://www.univie.ac.at/future.media/moe/galerie.html
- 4. <u>https://ia800504.us.archive.org/11/items/elementsofcoordi00lone/elementsofcoordi</u> 00lone.pdf
- 5. https://archive.org/details/elementarytreati033329mbp/page/n23/mode/2up
- 6. <u>https://rodrigopacios.github.io/mrpacios/download/Thomas_Calculus.pdf</u>

MAPPING WITH PROGRAMME OUTCOMES

AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	2	1	1	-	3	3	2	-	-
CO2	3	3	3	3	2	2	-	3	3	2	-	-
CO3	3	3	3	3	3	2	-	3	3	2	-	-
CO4	3	3	3	3	3	2	-	3	3	3	-	-
CO5	3	3	3	3	2	2	-	3	3	2	-	-
TOTAL	15	14	14	14	11	9	-	15	15	11	-	-
AVERAGE	3	2.8	2.8	2.8	2.2	1.8	-	3	3	2.2	-	-

3 – Strong, 2- Medium, 1- Low

SEMESTER II

CORE COURSE IV: INTEGRAL CALCULUS

	-		6	a	a 11		Total			Marks	5
Course Code	L	Т	Р	S	Credits	Inst. Hours	Hours	CIA	Exte	rnal	Total
4U232CC2	4	-	-	-	4	4	60	25	7	5	100
Pre-requisite: 1	2 th St	anda	ard l	Mat	hematics						
Learning Obje											
. Knowledge			atio	n an	d its geom	etrical applica	tions, do	uble, tri	ple int	egrals a	and
improper int		0			U	11	,	,	•	C	
2. Knowledge	0		eta a	nd (Gamma fu	nctions and sk	ills to det	ermine	Fourie	er series	3
expansions.											
1											
Course Outcon	ies										
Course Outcon On the succe		con	nple	tior	of the co	urse, students	s will be a	able to:			
On the succe1.determine	ssful ne th	e int	egra	als o	f algebraid	c, trigonometri					K1
On the succe1.determine	ssful ne th	e int	egra	als o	f algebraid	,					K1
On the succe1.determifunction	ssful ne the ns and e dou	e int d to : ble a	egra find	als o the	f algebraic reduction	c, trigonometri	c and log	arithmi	с		K1 K2
On the succe1.determifunction2.evaluateof integ3.solve m	ssful ne the ns and e dou ration ultip	e int d to t ble a n. le in	egra find and tegr	als o the tripl	f algebraid reduction le integrals and to find	c, trigonometri formulae. s and problems I the areas of c	c and log s using ch	arithmi ange of	с		
On the succe1.determifunction2.evaluateof integ3.solve mand volv	ssful ne the ns and e dou ration ultipl umes beta	e int d to ble a n. le in of s and	egra find and tegr	als o the tripl als of	f algebraid reduction le integrals and to find revolution	c, trigonometri formulae. s and problems I the areas of c	c and log s using ch urved sur	arithmi ange of faces	c `order		K2

K1 - Remember; **K2** - Understand; **K3** – Apply

Units	Contents	No. of Hours
I	Reduction formulae -Types, integration of product of powers of algebraic and trigonometric functions, integration of product of powers of algebraic and logarithmic functions – Bernoulli's formula. Calculus – Chapter 2: 2.8	12
II	Double Integrals –definition of double integrals-evaluation of double integrals - double integrals in polar coordinates – Change of order of integration. Calculus – Chapter 3: 3.1, 3.2	12
III	Triple integrals - applications of multiple integrals -volumes of solids of revolution – areas of curved surfaces – Change of variables. Calculus – Chapter 3: 3.3, 3.4	12
IV	Beta and Gamma functions – definitions – recurrence formula of Gamma functions – properties of Beta and Gamma functions – relation between Beta and Gamma functions - Applications. Calculus, Volume II – Chapter 7: 2.1, 2.2, 2.3	12
V	Fourier Series – Definition, The Cosine and Sine Series, Halfrange Fourier Cosine and Sine Series. Calculus – Chapter 5	12

Self-study	Relation between Beta and Gamma functions- Applications.
------------	--

Textbooks

- 1. Arumugam S & Thangapandi Isaac A, 2014. *Calculus*, New Gamma Publishing House, Palayamkottai.
- 2. Narayanan S & Manicavachagom Pillay T. K, 2009. *Calculus*, Volume II,S. Viswanathan (Printers and Publishers) Pvt. Ltd.

Reference Books

- 1. Anton H, Birens I and Davis S,2002 . *Calculus*, John Wiley and Sons, Inc.
- 2. Thomas G. Band Finney R. L,2007. *Calculus*, Pearson Education.
- 3. Chatterjee D, *Integral Calculus and Differential Equations*, Tata-McGraw Hill Publishing Company Ltd.
- 4. Dyke P, 2001. *An Introduction to Laplace Transforms and Fourier Series*, Second edition, Springer Undergraduate Mathematics Series.
- 5. Sharma A. K, 2005. *Text Book of Integral Calculus*, Discovery Publishing House Pvt. Ltd., New Delhi.

Web Resources

https://nptel.ac.in

1.

- 2. <u>https://www.freebookcentre.net/maths-books-download/Integral-Calculus-Miguel-A.-</u> Lerma.html
- 3. <u>https://3lihandam69.files.wordpress.com/2018/10/calculus-10th-edition-anton.pdf</u>
- 4. <u>http://www.sufwan.com/wp-content/uploads/CalculusAndAnalyticalGeometry/Calculus-Book-Thomas Finney.pdf</u>
- 5. http://ndl.ethernet.edu.et/bitstream/123456789/55096/1/Tsuneo%20Arakawa.pdf

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	2	3	2	3	2	2	2	2
CO2	3	2	3	3	3	2	2	3	2	2	2	2
CO3	3	2	3	3	3	2	2	3	2	2	2	2
CO4	3	2	3	3	2	2	2	3	2	2	2	2
CO5	3	2	3	3	3	2	2	3	2	2	2	2
TOTAL	15	10	15	15	13	11	10	15	10	10	10	10
AVERAGE	3	2	3	3	2.6	2.2	2	3	2	2	2	2

3 – Strong, 2- Medium, 1- Low

SEMESTER – II

ELECTIVE COURSE – II : VECTOR CALCULUS AND FOURIER SERIES

Course Code	L T P S Credits Inst. Hours Tota Hour		Total	Marks						
Course Coue	L	I	Г	מ	Creatis	mst. nours	Hours	CIA	External	Total
MU232EC1	5	1	-		5	6	90	25	75	100

Pre-requisite:

Students should know the basic principles of calculus, differentiation and integration Learning Objectives:

- 1. To understand the concepts of vector differentiation and vector integration.
- 2. To apply the concepts in their respective disciplines.

Course Outcomes

On the s	On the successful completion of the course, student will be able to:										
1	remember the formulae of vector differentiation, integration and Fourier series	K1									
2	understand various theorems related to vector differentiation, integration and Beta, Gamma functions	K2									
3	solve problems on vector differentiation, integration, Beta, Gamma functions and Fourier series	К3									
4	compare double and triple integrals, line, surface integrals, Beta, Gamma functions and Fourier series for Even and odd functions	K2									

K1–RememberK2 - Understand K3 - Apply

Units	Contents	No. of Hours
I	Vector differentiation – Gradient – Divergence and curl – Directional Derivative – Normal to a surface - Solenoidal, irrotational and harmonic vectors. Allied Mathematics Paper-II- Chapter 5: sections 5.3, 5.4	18
II	Evaluation of double and triple integrals Allied Mathematics Paper-II- Chapter 6: sections 6.1, 6.2	18
ш	Vector integration - Work done by a force - Evaluation of line integrals and surface integrals - Green's and Stokes theorems (Statement only) with problems. Allied Mathematics Paper-II- Chapter 7: sections 7.1-7.3	18
IV	Beta and Gamma Function Calculus - Chapter:4	18
V	Fourier series–Even and odd functions–Half range Fourier series. Calculus - Chapter:5	18

Self Study	Evaluation of line integrals and surface integrals

Text books

- 1. Arumugam. S, Thangapandi Issac. A, 2012, Allied Mathematics Paper-II, New Gamma Publishing House, Palayamkottai,.
- 2. Arumugam. S, Thangapandi Issac. A, 2014, Calculus,New Gamma Publishing House, Palayamkottai,.

Reference Books

- 1. Arumugam. S, Thangapandi Issac. A, (2017), Analytical Geometry 3D &Vector Calculus, New Gamma Publishing House, Palayamkottai.
- 2. Susan.J.C, (2012), Vector Calculus(4thEdition), Pearson Education, Boston.
- 3. Murray Spiegel-Vector analysis –Schaum Publishing company, NewYork (2009).
- 4. Manicavachagom Pillai. T.K, (2012), Calculus(VoIII), S. Vishvanathan Printer and Publisher PVT.LTD
- 5. DuraiPandian, P., & LaxmiDuraiPandian. (1986). Vector Analysis. Emerald Publishers.

Web Resources

- 1. https://nptel.ac.in
- 2. <u>https://www.youtube.com/watch?v=_rKQP7f2tUw</u>
- 3. <u>https://www.youtube.com/watch?v=D2eHgZ4kMHU</u>
- 4. <u>https://www.youtube.com/watch?v=r6sGWTCMz2k</u>
- 5. <u>https://www.youtube.com/watch?v=x04dnqg-iPw</u>
- 6. <u>https://www.youtube.com/watch?v=Z8D_TEs9-zg</u>

		AND	PROC	FRAN	IME S	SPEC	IFIC	DUTC	OMES			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	3	3	1	2	3	3	3	2	2
CO2	3	2	1	3	3	1	2	3	3	3	2	2
CO3	3	2	1	3	3	1	2	3	3	3	2	2
CO4	3	2	1	3	3	1	2	3	3	3	3	2
TOTAL	12	8	4	12	12	4	8	12	12	12	9	8
AVERAGE	3	2	1	3	3	1	2	3	3	3	2.25	2

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER – II

Non-Major Elective Course II

Mathematics for Competitive Examinations II

Course Code	т	т	D	G	Credita	Inst Hours	Total	MarksCIAExternalTotal				
Course Coue	L	I	I	3	Creans	1115t. 110u15	Hours	CIA	External	Total		
MU232NM1		-	-	-	2	2	30	50	50	100		

Pre-requisite:

Students should have basic knowledge on Mathematical calculations.

Learning Objectives

- 3. To understand the problems stated in various competitive examinations and realize the approach to get solution.
- 4. To acquire skill in solving quantitative aptitude by simple methods.

Course Outcomes

On the successful completion of the course, student will be able to:								
1.	understand the problems and remember the methods to solve problems.	K2						
2.	identify the appropriate method to solve problems.	K1						
3.	apply the best mathematical method and obtain the solution in short.	К3						
4.	apply fundamental mathematical concepts to calculate simple interest, compound interest	K3						
5.	develop problem-solving skills and critical thinking by effectively solving real-world scenarios involving financial calculation	K2						

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents						
Ι	Simple Interest: Finding simple interest, principal amount. Compound Interest : Annual compound interest, Half-yearly compound interest – Quarterly Compound interest. (Chapter 22 and Chapter 23).	6					
II	Time and work: Work sharing – Individual work – Combined work – Time taken for work.(Chapter17)						
III	Time and Distance: Comparing speed –Average speed- Distance travelled by vehicles – Travelling Time(Chapter 18).						
IV	Chain Rule: Direct Proportion – Indirect Proportion(Chapter 15).	6					
V	Pipes and Cisterns: Filling the tank and emptying the tank. (Chapter 16)	6					

Self-study Chain Rule – Direct Proportion

Text book

Aggarwal, R.S (2017). *Quantitative Aptitude* (Revised Edition). S. Chand and Company LTD.

Reference Books

- 1. Guha, A. 2011. *Quantitative Aptitude for Competitive Examinations* (4thEdition). Published by McGraw Hill Education (India) Pvt. Ltd.
- 2. Aggarwal, R.S (2022). Quantitative Aptitude (Revised Edition). S. Chand and

Company LTD.

- 3. Immaculate, M. 2009. *Mathematics for Life*. Published by Nanjil offset Printers.
- 4. Arun Sharma. 2008. *Objective Mathematics* (2nd Edition). Tata McGraw-Hill Publishing Company Limited.
- 5. Chauhan, R.S. 2011. *Objective Mathematics*. Unique Publisher.
- 6. Goyal, J. K. Gupta, K. P. 2011. *Objective Mathematics* (6th Revised Edition). Pragati Prakashan Educational Publishers.

Web Resources

- 1. <u>Aptitude Made Easy Compound interest Basics and Methods, shortcuts, Math</u> <u>tricks - YouTube</u>
- 2. <u>Aptitude Made Easy Simple Interest Part 1, Basics and Methods, Shortcuts, Tricks</u> <u>- YouTube</u>
- 3. <u>Time and Distance _LESSON #1(Introduction) YouTube</u>
- 4. <u>Speed, Distance & Time Shortcuts & Tricks for Placement Tests, Job Interviews & Exams YouTube</u>
- 5. <u>Pipes and Cisterns Shortcuts & Tricks for Placement Tests</u>, Job Interviews & Exams <u>YouTube</u>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	1	3	3	1	3	3	3	2	3	3
CO2	2	3	1	3	3	2	3	3	3	2	3	3
CO3	2	3	1	3	3	2	3	3	3	3	3	3
CO4	2	3	1	3	3	2	3	3	3	2	3	3
CO5	2	3	1	3	3	1	3	3	3	2	3	3
TOTAL	10	15	5	15	15	8	15	15	15	11	15	15
AVERAGE	2	3	1	3	3	1.6	3	3	3	2.2	3	3

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER – II SKILL ENHANCEMENT COURSE -SEC-I: INTRODUCTION TO COMPUTATIONAL MATHEMATICS

Course Code	т	т	D	G	Credita	Inst. Hours	Total	Marks		
Course Coue	L	I	Г	3	Creans	mst. nours	Hours	CIA	External	Total
MU232SE1	2	-	-	-	2	2	30	25	75	100

Prerequisites: Students should have basic knowledge on Mathematical calculations. Learning Objectives

1) To study and design mathematical models for the numerical solution of scientific problems 2) To acquire the skills and confidence to learn new mathematical knowledge as becomes necessary in the course of a lifetime.

On the su	On the successful completion of the course, student will be able to:					
CO1	gain an appreciation for the role of computers in mathematics, science, and engineering as a complement to analytical and experimental approaches.	K1 & K2				
CO2	acquire a strong foundation in numerical analysis, enabling students to evaluate and analyze numerical solutions for mathematical problems.	K2				
CO3	use and evaluate alternative numerical methods for the solution of systems of equations.	K3				
CO4	foster critical thinking skills in assessing computational methods for problem solving.	K3				
CO5	apply mathematical concepts to practical problems through computational approaches.	K3				

Course Outcomes

K1 - Remember: K2 - Understand: K3 - Apply

Unit	Contents	No. of Hours
Ι	Errors in Numerical Calculations: Computer and Numerical Software-Computer Languages- Software Packages – Mathematical Preliminaries-Errors and their computations - A general error formula. Chapter1: 1.1-1.4	6
II	Solution of Algebraic and Transcendental Equations: Introduction- Bisection method - Method of False Position. Chapter 2: 2.1- 2.3	6
III	Interpolation: Finite differences - Forward Differences - Backward Differences - Central Differences. Chapter 3: 3.1- 3.3.3	6
IV	Numerical Differentiation and Integration: Errors in Numerical Differentiation-Cubic Splines Method- Differentiation formulae with function values- Trapezoidal Rule Chapter 6: 6.1-6.2; 6.4.1	6
V	Numerical Linear Algebra: Triangular Matrices- LU Decomposition of a Matrix-Vector and Matrix Norms- Solutions of linear systems	6

Direct Method-Gauss Elimination Method. Chapter 7: 7.1-7.5.1	
TOTAL	30

Self-study Triangular Matrices

Text Book

Sastry S. S, 2015, Introductory Methods of Numerical Analysis, Fifth Edition, PHI Learning Pvt. Ltd., New Delhi,.

Reference Books

- 1. Jain M. K, Iyengar S. R. K., JainR. K, 2012, Numerical Methods for Scientific and Engineering Computation, Second Edition, Wiley Eastern Ltd, New Delhi.
- 2. Veda Murthy V. N, Iyengar S. N, 2008, Numerical Methods, Second Reprint, Vikas Publishing house PVT. Ltd.
- 3. Shankar Rao G, 2007, Mathematical Methods, I.K. International Publishing House Pvt., New Delhi.
- 4. Mollah S.A., 2011, Numerical Analysis and Computational Procedures, Fourth Edition, Books and Allied (P) Ltd.
- 5. Gupta B. D., 1989, Numerical Analysis, Konark Publishers Pvt. Ltd.,

Web Resources

1) https://nptel.ac.in/courses/127/106/127106019/

- 2) https://nptel.ac.in/courses/111/107/111107105/
- 3) <u>https://nptel.ac.in/courses/111/107/111107062/</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME-SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	2	2	3	3	3	3	3	3	3
CO2	3	1	1	3	3	1	3	3	3	3	3	3
CO3	3	1	1	2	2	1	2	2	1	2	2	3
CO4	3	1	1	3	3	1	3	3	3	3	3	3
CO5	3	1	1	3	3	1	3	3	3	3	2	3
TOTAL	15	5	5	13	13	7	14	14	13	14	13	15
AVERAGE	3	1	1	2.6	2.6	1.4	2.8	2.8	2.6	2.8	2.6	3

3 – Strong, 2- Medium, 1- Low

SEMESTER I & II Life Skill Training I: Catechism Course Code: UG232LC1

Hours	Credit	Total Hours	Total Marks			
1	1	30	100			

Objectives:

- 1. To develop human values through value education
- 2. To understand the significance of humane and values to lead a moral life
- 3. To make the students realize how values lead to success

Course Upon completion of this course the students will be able to			
Outcome			
CO-1	understand the aim and significance of value education		
CO-2	develop individual skills and act confidently in the society		
CO-3	learn how to live lovingly through family values		
CO-4	enhance spiritual values through strong faith in God		
CO-5	learn good behaviors through social values		

Unit I

Value Education:

Human Values – Types of Values – Growth – Components – Need and Importance Bible Reference: Matthew: 5:3-16

Unit II

Individual Values: Esther

 $\label{eq:Vanishing Humanity-Components of Humanity-Crisis-Balanced Emotion-Values of Life$

Bible Reference: Esther 8:3-6

Unit III

Family Values: Ruth the Moabite

Respecting Parents – Loving Everyone – Confession – True Love

Bible Reference: Ruth 2:10-13

Spiritual Values: Hannah

Faith in God – Wisdom – Spiritual Discipline – Fear in God – Spiritually Good Deeds Bible Reference: 1 Samuel 1:24-28

Unit IV

Social Values: Deborah

 $Good \ Behaviour - Devotion \ to \ Teachers - Save \ Nature - Positive \ Thoughts \ -The Role \ of \ Youth \ in \ Social \ Welfare$

Bible Reference: Judges 4:4-9

Unit V

Cultural Values: Mary of Bethany

Bible Reference: Luke 10:38-42

Text Book

Humane and Values. Holy Cross College (Autonomous), Nagercoil The Holy Bible

SEMESTER I & II Life Skill Training I: Moral Course Code: UG232LM1

Hours	Credit	Total Hours	Total Marks				
1	1	30	100				

Objectives:

- 4. To develop human values through value education
- 5. To understand the significance of humane and values to lead a moral life
- 6. To make the students realize how values lead to success

Course Upon completion of this course the students will be able to			
Outcome			
CO-1	understand the aim and significance of value education		
CO-2	develop individual skills and act confidently in the society		
CO-3	learn how to live lovingly through family values		
CO-4	enhance spiritual values through strong faith in God		
CO-5	learn good behaviours through social values		

Unit I

Value Education:

 $Introduction-Limitations-Human\ Values-Types\ of\ Values-Aim\ of\ Value\ Education-Growth-Components-Need\ and\ Importance$

Unit II

Individual Values:

Individual Assessment – Vanishing Humanity – Components of Humanity – Crisis – Balanced Emotion – Values of Life

Unit III

Family Values:

Life Assessment – Respecting Parents – Loving Everyone – Confession – True Love Unit IV

Spiritual Values:

Faith in God – Wisdom – Spiritual Discipline – Fear in God – Spiritually Good Deeds **Social Values:**

 $Good \ Behaviour - Devotion \ to \ Teachers - Save \ Nature - Positive \ Thoughts - Drug \ Free \ Path - The \ Role \ of \ Youth \ in \ Social \ Welfare$

Unit V

Cultural Values:

 $\label{eq:constraint} Traditional\ Culture\ -\ Changing\ Culture\ -\ Food\ -\ Dress\ -\ Habit\ -\ Relationship\ -\ Media\ -\ The\ Role\ of\ Youth$

Text Book

Humane and Values. Holy Cross College (Autonomous), Nagercoil

Content addressed with EmployabilityContent addressed with Entrepreneurship

Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I & II

Guidelines & Syllabus

DEPARTMENT OF MATHEMATICS

2023-2026 (With effect from the academic year 2023-2024)

> Issued from THE DEANS' OFFICE

Vision

To empower women globally competent with human values and ethics acquiring academic and entrepreneurship skills through holistic education.

Mission

- 1. To create opportunities which will ensure academic excellence in critical thinking, humanistic and scientific inquiry.
- 2. To develop application-oriented courses with the necessary input of values.
- 3. To create a possible environment for innovation, team spirit and entrepreneurial leadership.
- 4. To form young women of competence, commitment and compassion.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

POs	Upon completion of M. Sc. Degree Programme, the graduates will be able to:	Mapping with Mission
PEO1	apply scientific and computational technology to solve social and ecological issues and pursue research.	M1, M2
PEO2	continue to learn and advance their career in industry both in private and public sectors.	M4 & M5
PEO3	develop leadership, teamwork, and professional abilities to become a more cultured and civilized person and to tackle the challenges in serving the country.	M2, M5 & M6

PROGRAMME OUTCOMES (POs)

Pos	Upon completion of M.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2
PO2	carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication.	PEO1, PEO2 & PEO3
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO2
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO2
PO5	through active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO2
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO2 & PEO3
PO7	learn independently for lifelong executing professional, social and ethical responsibilities leading to sustainable development.	PEO3

Programme Specific Outcomes (PSOs)

PSO	Upon completion of M.Sc. Degree Programme, the graduates of Mathematics will be able to:	PO Addressed
PSO-1	acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics	PO1 & PO2
PSO-2	understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.	PO3 & PO5
PSO-3	prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions	PO6
PSO-4	pursue scientific research and develop new findings with global Impact using latest technologies.	PO4 & PO7
PSO-5	possess leadership, teamwork and professional skills, enabling them to become cultured and civilized individuals capable of effectively overcoming challenges in both private and public sectors.	

Mapping of PO'S and PSO'S

POs	PSO1	PSO2	PSO3	PSO4	PSO5
PO 1	S	М	S	S	S
PO 2	S	S	S	S	М
PO 3	S	S	М	S	S
PO4	S	М	S	S	М
PO5	М	S	М	S	S
PO6	S	S	S	М	S
PO7	S	S	S	S	S

Strong -S (3), Medium – M (2), Low – L (1)

Eligibility

(i) For Admission: A candidate who is a graduate of this college or any other recognized University in the main subject/subjects as given below against each or who has passed an examination accepted as equivalent thereto by the Syndicate of Manonmaniam Sundaranar University, Tirunelveli, is eligible for admission.

ii) Degree

The candidates shall have subsequently undergone the prescribed Programme of study in Holy Cross College (Autonomous) affiliated to the Manonmaniam Sundaranar University for a period of not less than two academic years comprising four semesters, passed the examinations prescribed and fulfilled such conditions as have been prescribed there of.

Duration

The duration of PG Programme is for a period of two years.

Components

Core Course	12x 100	1200
Core Lab Course	-	-
Elective Course	6 x 100	600
Elective Lab Course	-	-
Core Project	1 x 100	100
Total Marks		1900

Course Structure

(i) Curricular Courses:

Distribution of Hours and Credits

		SEM	ESTER	ER Total		
Course	Ι	II	III	IV	Hours	Credits
Core– Theory	7(5) + 7(5) + 6(4)	6(5)+ 6(5)+ 6(4)	6(5) + 6(5) + 6(5) + 6(5) + 6(4)	6(5) + 6 (5)	74	57
Elective Course	5 (3) + 5 (3)	4 (3) + 4 (3)	3 (3)	4 (3)	25	18
Core Project		-		10(7)	10	7
Skill Enhancement Course		4 (2)	3 (2)	4 (2)	11	6
Internship/ Industrial Activity			(2)		-	2
Extension Activity				(1)	-	1
Total	30 (20)	30 (22)	30 (26)	30 (23)	120	91

(ii) Co-curricular Courses

Course	SEMESTER			Total	
	Ι	II	III	IV	Credits
Life Skill Training –I	-	(1)	-	-	1
Life Skill Training –II	-	-	-	(1)	1
Field Project	(1)		-		1
Specific Value-Added Courses	(1)		(1)		2
Generic Value-Added Courses		(1)		(1)	2
MOOC		(1)		(1)	2
Community Engagement Activity (UBA)		(1)			1

Total Number of Hours=120Total Number of Credits =91 + (10)

Non-academic courses are mandatory and conducted outside the regular working hours.

Courses Offered Semester I

Course Code	Title of the Course	Credits	Hours
MP231CC1	Core Course I: Algebraic Structures	5	7
MP231CC2	Core Course II: Real Analysis I	5	7
MP231CC3	Core Course III: Ordinary Differential Equations	4	6
MP231EC1	Elective Course I: a) Number theory and Cryptography		5
MP231EC2	Elective Course I: b) Graph Theory and Applications	3	5
MP231EC3	Elective Course I: c) Programming In C++		
MP231EC4	Elective Course II: a) Discrete Mathematics		
MP231EC5	Elective Course II: b) Analytic Number Theory	3	5
MP231EC6	Elective Course II: c)Fuzzy sets and their Applications		
	Total	20	30

Semester II

Course Code	Title of the Course	Credits	Hours
MP232CC1	Core Course IV: Advanced Algebra		6
MP232CC2	Core Course V: Real Analysis II	5	6
MP232CC3	Core Course VI: Partial Differential Equations	4	6
MP232EC1	Elective Course III: a) Mathematical Statistics		
MP232EC2	Elective Course III: b) Statistical Data Analysis using R Programming	3	4
MP232EC3	Elective Course III: c) Programming in C++ Practical		
MP232EC4	Elective Course IV: a) Operations Modeling		
MP232EC5	Elective Course IV: b) Mathematical Python	3	4
MP232EC6	Elective Course IV: c) Neural Networks		
MP232SE1	Skill Enhancement I – Modeling and Simulation with Excel	2	4
	Total	22	30

Course	Course				
Code	Title of the Course	Credits	Hours		
MP233CC1	Core Course VII: Complex Analysis	5	6		
MP233CC2	Core Course VIII: Probability Theory	5	6		
MP233CC3	Core Course IX: Topology	5	6		
MP233CC4	Core Course X: Core Industry Module Mechanics	4	6		
MP233EC1	Elective Course V: a) Stochastic Processes	3	3		
MP233EC2	Elective Course V: b) Tensor Analysis and Relativity				
MP233EC3	Elective Course V: c) Financial Mathematics				
MP233SE1	Skill Enhancement Course II: Professional Communication Skill: Term paper & Seminar presentation Assignment of Problem by faculty Lecture - I (by the student) 25% Lecture - II (by the student) 25% Lecture - III (by the student) 25% Submission of a write-up (10 to15 pages using LaTex) 25% Marks / Grade Points / Lecture Grade as per the Regulation)	2	3		
MP233IS1	Internship/ Industrial activity (Carried out in Summer Vacation at the end of I year – 30 hours)	2	-		
	Total	26	30		

Semester III

Semester IV

Course Code	Title of the Course	Credits	Hours
MP234CC1	Core Course X: Functional Analysis	5	6
MP234CC2	Core Course XI: Differential Geometry	5	6
MP234PW1	Core Project	10	7
MP234EC1	Elective Course VI: a) Algebraic Topology	3	4
MP234EC2	Elective Course VI: b) Resource Management Techniques	3	4
MP234EC3	Elective Course VI: c) Research Methodology Practical	3	4

Co-curricular Courses

Semester	Code	Title of the Course	Credit
I & II	PG23LST1	Life Skill Training	1
II & IV	- PG232CE1	MOOC Community Engagement Course (CEC)	1+1
III & IV	PG23LST2	Life Skill Training	1
Ι	MP231FP1	Field Project	1
I & III	MP231V01 / MP233V01	Specific Value-added Course	1+1
II & IV	PG232V01- PG232V12/ PG234V01- PG234V12	Generic Value-added Course	1+1
		Total	10

Specific value-added Course

S. No.	Course code	Title of the course	Total hours
ssI	MP231V01	SCILAB	30
2.	MP231V02	Creating Documents using LassTex	30

Examination Pattern

i) Core Course / Elective Course

Internal: External–25:75 Continuous Internal Assessment (CIA)

Internal Components and Distribution of Marks

Components	Marks
Internal test (2) (40 marks)	10
Quiz (2) (20 marks)	5
Seminar (10 marks)	5
Assignment: (Model Making, Exhibition, Role Play, Group Discussion, Problem Solving, Class Test, Open Book Test (Minimum three items per course) (30 marks)	5
Total	25

Question Pattern

Internal Test	Marks	External Exam	Marks
Part A 4 x 1 (No choice)	4	Part A 10 x 1 (No choice)	10
Part B 3 x 4(Internal choice)	12	Part B 5 x 6 (Internal choice)	30
Part C 3 x 8 (Internal choice)	24	Part C 5 x 12 (Internal choice)	60
Total	40	Total	100

ii) Lab Course:

Ratio of Internal and External= 25:75 Total: 100 marks

Internal Components and Distribution of Marks

Internal Components	Marks
Performance of the Experiments	10
Regularity in attending practical and submission of records	5
Record	5
Model exam	5
Total	25

Question pattern

External Exam	Marks
Major Practical	75
Minor Practical / Spotters /Record	15
Total	75

iii) Skill Enhancement Course

Ratio of Internal and External = 25:75

Internal Components and Distribution of Marks

Components	Marks
Internal test (2)	10
Quiz (2)	5
Assignment: (Model Making, Exhibition, Role Play, Album, Group Activity (Mime, Skit, Song) (Minimum three items per course)	10
Total	25

Question Pattern

Internal Test	Marks	External Exam	Marks
Part A 2 x 2(No Choice)	4	Part A 5 x 2(No Choice)	10
Part B 3 x 4 (Open choice Three	12	Part B 5 x 5 (Open choice	25
out of Five)	12	any Five out of Eight)	20
Part C 1 x 9 (Open choice One out of Three)	9	Part C 5 x 8 (Open choice any Five out of Eight)	40
Total	25	Total	75

iv) Internship/ Industrial Activity

Components	Marks
Industry Contribution	50
Report & Viva-voce	50

v) Core Project:

Ratio of Internal and External 25 : 75

Internal (Supervisor)	Marks
I Review	5
II Review	5
Report	15
External (External Examiner)	
Report	40
Viva-voce (individual, open viva-voce)	35
Total	100

Co-Curricular Courses:

(i) Life Skill Training Internal Component

Components		Marks
	Album (20 pages)	30
Life Skill Training -I	Group Song, Mime, Skit (Group of 5students)	20
	Total	50
Life Skill Training -II	Case Study (30 pages)	50
	Total	50

External Component

Written Test	Five out of Seven (5 x 10)	50
	Total	50

(ii) Field Project:

Components	Marks
Field Work	50
Report & Viva-voce	50

(iii) Specific Value-Added Courses & Generic Value-Added Courses:

Components	Marks
Internal	25
External	75

(iv) Community Engagement Activity-UBA

Internal Component		
Component	Marks	
Attendance (Field Work)	30	
Participation	20	
Total	50	

External Component

Component	Marks
Group Project Report/ Case Study (10-15 pages in print)	50
Total	50

Outcome Based Education

(i) Knowledge levels for assessment of Outcomes based on Blooms Taxonomy

S. No	Level	Parameter	Description
1	KI	Knowledge/Remembering	It is the ability to remember the
			previously learned
2	K2	Comprehension/Understanding	The learner explains ideas or
			concepts
3	K3	Application/Applying	The learner uses information in a
			new way
4	K4	Analysis/Analysing	The learner distinguishes among
			different parts
5	K5	Evaluation/Evaluating	The learner justifies a stand or
			decision
6	K6	Synthesis /Creating	The learner creates a new product
			or point of view

Assessment	Cognitive Level	KI			K2			K3			K4, K5, K6			Total
Internal Test	Part	A	A B C		А	В	C	А	В	С	А	В	C	
	No. Of Questions	1	1			1		1		1	2	1	2	10
External Examination	Part	A	В	С	A	В	С	A	В	С	A	В	С	
	No. Of Questions	3	-	1	3	1	1	1	2	1	3	2	2	20

(ii)Weightage of K – levels in Question Paper Number of questions for each cognitive level:

Evaluation

- i. The performance of a student in each Course is evaluated in terms of percentage of marks with a provision for conversion to grade points.
- Evaluation for each Course shall be done by a Continuous Internal Assessment (CIA) by the Course teacher as well as by an end semester examination and will be consolidated at the end of the semester.
- There shall be examinations at the end of each semester, for odd semesters in October/November; for even semesters in April / May.
- A candidate who does not pass the examination in any course (s) shall be permitted to re-appear in such failed course (s) in the subsequent examination to be held in October / November or April / May. However, candidates who have arrears in Practical Examination(s) shall be permitted to re-appear for their arrears only along with Regular Practical examinations in the respective semester.

iv. Viva- voce: Each candidate shall be required to appear for Viva-voce Examination in defense of the Project.

vi. The results of all the examinations will be published in the College website.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree of Master of Arts / Science / Commerce only if the minimum required credits for the programme thereof (91 +10 credits) is earned.

Grading System

For a semester examination:

Calculation of Grade Point Average for End Semester Examination: GPA = <u>Sum of the multiplication of grade points by the credits of the course</u> Sum of the credits of the courses (passed) in a semester

For the entire programme:

Cumulative Grade Point Average (CGPA) $\Sigma_n \Sigma_i C_{ni} G_{ni} / \Sigma_{ni} \Sigma_i C_{ni}$

CGPA = <u>Sum of the multiplication of grade points by the credits of the entire programme</u> Sum of the credits of the courses of the entire programme

Where

C_i - Credits earned for course i in any semester

G_i - Grade point obtained for course i in any semester

n - semester in which such courses were credited

Final Result

Range of Marks	Grade Points	Letter Grade	Description
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	А	Good
50-59	5.0-5.9	В	Average
00-49	0.0	U	Re-Appear
ABSENT	0.0	AAA	ABSENT

Overall Performance

CGPA	Grade	Classification of Final Results
9.5-10.0	0+	First Class – Exemplary*
9.0 and above but below 9.5	0	
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class with Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	First Class
6.5 and above but below 7.0	A+	
6.0and above but below 6.5	А	
5.5and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	
0.0 and above but below 5.0	U	Re-appear

*The candidates who have passed in the first appearance and within the prescribed semester are eligible.

SEMESTER-I

CORE COURSE – I: ALGEBRAIC STRUCTURES

Course Code	т	Т	D	c	Credits Inst. Hours		Total		Marks	
Course Coue	L		Г	3	Creans	mst. nours	Hours	CIA	External	Total
MP231CC1	5	2			5	7	105	25	75	100

Pre-requisite:

Students should know the basic concepts of modern Algebra

Learning Objectives:

- 1. To introduce the concepts and to develop working knowledge on class equation, solvability of groups.
- 2. To understand the concepts of finite abelian groups, linear transformations, real quadratic forms.

	Course Outcomes	
On the	successful completion of the course, student will be able to:	
1.	recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the theorem to find number of Sylow subgroups.	K1
2.	define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules	K2
3.	define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nilpotence to decompose a space into invariant subspaces, to find invariants of linear transformation, to explore the properties of nil potent transformation relating nilpotence with invariants.	К3
4.	define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation.	K3, K4
5.	define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian, unitary, normal transformations and to Evaluate whether the transformation in Hermitian, unitary and normal	K5

K1–RememberK2 - Understand K3 - Apply K4– AnalyzeK5-Evaluate

Units	Contents						
Ι	Counting Principle - Class equation for finite groups and its applications – Sylow's theorems (For theorem 2.12.1, First proof only). Chapter 2: Sections 2.11 and 2.12 (Omit Lemma 2.12.5)	21					
п	Solvable groups - Direct products - Finite abelian groups- Modules Chapter 5: Section 5.7 (Lemma 5.7.1, Lemma 5.7.2, Theorem 5.7.1) Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only) Chapter 4: Section 4.5	21					
III	Linear Transformations: Canonical forms - Triangular form - Nilpotent	21					

	transformations. Chapter 6: Sections 6.4, 6.5	
IV	Jordan form - rational canonical form. Chapter 6: Sections 6.6 and 6.7	21
V	Trace and transpose - Hermitian, unitary, normal transformations, real quadratic form. Chapter 6: Sections 6.8, 6.10 and 6.11 (Omit 6.9)	21

Self Study	Problems and definition

Text book

I. N. Herstein. Topics in Algebra (II Edition) Wiley Eastern Limited, New Delhi, 1975.

Reference Books

1. M. Artin, Algebra, Prentice Hall of India, 1991.

- 2.P.B. Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)
- 3.I.S. Luther and I.B.S.Passi, Algebra, Vol. I–Groups(1996); Vol.II Rings, Narosa Publishing House, New Delhi, 1999
- 4.D.S. Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract Algebra, McGraw Hill (International Edition), New York,1997
- 5.N. Jacobson, Basic Algebra, Vol. I & amp; II W.H.Freeman (1980); also published by Hindustan Publishing Company, New Delhi.

Web Resources

1. https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Abstract_Algebra%3 A_Theory_and_Applications_(Judson)/13%3A_The_Structure_of_Groups/13.01%3A_Finite_A belian_Groups

2. https://groupprops.subwiki.org/wiki/Finite_abelian_group

3.https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Abstract_Algebra%3

 $A_Theory_and_Applications_(Judson)/13\%3A_The_Structure_of_Groups/13.02\%3A_Solvable_interval} and applications_(Judson)/13\%3A_The_Structure_of_Groups/13.02\%3A_Solvable_interval} and applications_(Judson)/13\%3A_The_Structure_Solvable_Sol$

Groups

4.https://math.berkeley.edu/~kpmann/SylowNotes.pdf

5.https://brilliant.org/wiki/sylow-theorems

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	2	1	1	3	3	3	2	2
CO2	3	3	1	2	2	1	2	3	3	3	2	2
CO3	3	3	1	2	2	1	2	3	3	3	2	2
CO4	3	3	2	2	2	1	2	3	3	3	3	2
CO5	3	3	2	2	2	1	1	3	3	3	3	2
TOTAL	15	15	8	10	10	5	8	15	15	15	12	10
AVERAGE	3	3	1.6	2	2	1	1.6	3	3	3	2.4	2

3 – Strong, 2- Medium, 1- Low

SEMESTER – I

CORE COURSE – II: REAL ANALYSIS I

Course Code	т	т	D	S	Credita	Inst. Hours	Total		Marks	
Course Coue	L	I	r	3	Creans	mst. nours	Hours	CIA	External	Total
MP231CC2	5	2	-		5	7	105	25	75	100

Pre-requisite:

Students should know UG level Real Analysis concepts.

Learning Objectives:

- 1. To work comfortably with functions of bounded variation, Riemann-Stieltjes Integration, convergence of infinite series, infinite product and uniform convergence.
- 2. To relate its interplay between various limiting operations.

Course Outcomes

On th	On the successful completion of the course, student will be able to:										
1	analyze and evaluate functions of bounded variation and Rectifiable Curves.	K4 & K5									
2	describe the concept of Riemann-Stieltjes integral and its properties.	K1 & K2									
3	demonstrate the concept of step function, upper function, Lebesgue function and their integrals.	K3									
4	construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.	K3 & K5									
5	formulate the concept and properties of inner products, norms and measurable functions.	K2 & K3									

K1-RememberK2- Understand K3 - Apply K4- Analyze K5 - Evaluate

Units	Contents	No. of Hours					
I	Functions of bounded variation - Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation. Chapter 6: 6.1 to 6.8 Infinite Series: Absolute and conditional convergence - Dirichlet's test and Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series. Chapter 8: 8.8, 8.15, 8.17, 8.18	21					
п	The Riemann - Stieltjes Integral - Introduction - Notation - The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral – Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems. Chapter 7: 7.1 to 7.14	21					
ш	The Riemann- Stieltjes Integral - Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes integrals-Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval – Second fundamental theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral-Riemann-Stieltjes integrals depending on a parameter- Differentiation under	21					

	integral sign-Lebesgue criterion for existence of Riemann integrals. Chapter 7: 7.15 to 7.26	
IV	Infinite Series and infinite Products - Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series – Cesarosummability - Infinite products. Chapter 8: 8.20 to 8.26 Power series - Multiplication of power series - The Taylor's series generated by a function - Bernstein's theorem - Abel's limit theorem - Tauber's theorem Chapter 9: 9.14, 9.15, 9.19, 9.20, 9.22, 9.23	21
V	Sequences of Functions – Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions - Uniform convergence and continuity - Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann - Stieltjes integration – Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series - Mean convergence. Chapter 9: 9.1 to 9.6, 9.8, 9.9, 9.10, 9.11, 9.13	21

Self Study Continuous functions, Convergent Series, Convergence

Text books

Tom M. Apostol. 1974. Mathematical Analysis (Second Edition). Addison-Wesley Publishing Company Inc., New York.

Reference Books

1. Bartle, R.G. 1976. Real Analysis. John Wiley and Sons Inc., New Delhi.

2. Rudin, W. 1976. Principles of Mathematical Analysis (Third Edition). McGraw Hill Company, New York.

- 3. Malik, S.C., Savita Arora. 1991. Mathematical Analysis. Wiley Eastern Limited, New Delhi.
- 4. Sanjay Arora, BansiLal. 1991. Introduction to Real Analysis. Satya Prakashan, New Delhi.
- 5. Gelbasssum, B.R., J. Olmsted. 1964.Counter Examples in Analysis. Holden day, San Francisco:
- 6. A.L.Gupta, N.R.Gupta. 2003. Principles of Real Analysis. Pearson Education, India.

Web Resources

- 1. http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics
- 2. http://www.opensource.org, www.mathpages.com
- 3. https://mathcs.org/analysis/reals/
- 4. https://ocw.mit.edu/courses/18-100c-real-analysis-fall-2012/
- $5. http://websitem.karatekin.edu.tr/user_files/farukpolat/files/probookmathanal1.pdf$

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

AND PROGRAMME SPECIFIC OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PS 05	
C01	3	3	3	1	1	2	1	3	3	2	3	2	
CO2	3	3	2	1	2	1	2	3	3	2	3	2	
CO3	3	3	2	1	2	2	1	3	3	3	3	2	
CO4	3	3	2	1	2	2	1	3	3	3	2	2	
CO5	3	3	2	2	2	1	2	3	3	2	3	2	
TOTAL	15	15	11	6	9	8	7	15	15	12	14	1 0	
AVERAGE	3	3	2.2	1.2	1.8	1.6	1.4	3	3	2.4	2.8	2	

3 - Strong, 2- Medium, 1- Low

SEMESTER – I

CO	RE (CO	UR	SE -III: O	RDINAF	RY DIFFF	ERENTIAL EQUATIONS
					T	T . 4 . 1	Montra

Course	т	т	р	G	Credits	Inst.	Total	Marks			
Code	L	I	r	3	Creans	Hours	Hours	CIA	External	Total	
MP231CC3	5	1	-	-	4	6	90	25	75	100	

Pre-requisite: UG level Calculus and Differential Equations

Learning Objectives:

1. To develop strong background on finding solutions to linear differential equations with constant and variable coefficients and also with singular points.

2. To study existence and uniqueness of the solutions of first order differential equation

Course Outcomes

On the su	On the successful completion of the course, student will be able to:									
1.	establish the qualitative behavior of solutions of systems of differential equations.	K3								
2.	recognize the physical phenomena modeled by differential equations and dynamical systems.	K1								
3.	analyze solutions using appropriate methods and give examples.	K4								
4.	formulate Green's function for boundary value problems.	K5								
5.	understand and use the various theoretical ideas and results that underlie the mathematics in course.	K2								

$K1-\mbox{Remember}K2$ - Understand K3 - Apply K4- Analyze $K5-\mbox{Evaluate}$

Units	Contents									
Onits	Contents	Hours								
I	Linear equations with constant coefficients: Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian-Non- homogeneous equation of order two. Chapter 2: Sections 1 to 6	18								
II	Linear equations with constant coefficients: Homogeneous and non-homogeneous equation of order n —Initial value problems- Annihilator method to solve non-homogeneous equation - Algebra of constant coefficient operators. Chapter 2: Sections 7 to 12.	18								
ш	Linear equation with variable coefficients: Initial value problems -Existence and uniqueness theorems — Solutions to solve a non-homogeneous equation — Wronskian and linear dependence — reduction of the order of a homogeneous equation — homogeneous equation with analytic coefficients-The Legendre equation. Chapter 3: Sections 1 to 8 (Omit section 9)	18								
IV	Linear equation with regular singular points: Euler equation — Second order equations with regular singular points — Exceptional cases — Bessel Function. Chapter 4: Sections 1 to 4 and 6 to 8 (Omit sections 5 and 9)	18								
v	Existence and uniqueness of solutions to first order equations: Equation with variable separated — Exact equation — method of successive approximations — the Lipschitz condition — convergence of the successive approximations and the existence theorem.	18								

Self-study	1. Wronskian and a formula for Wronskian
	2. Questions related to the above topics, from various competitive
	examinations UPSC / TRB / TNPSC / others to be solved

Text book

E. E. A. Coddington, 1987, *An introduction to ordinary differential equations* (3rd Printing), New Delhi, Prentice-Hall of India Ltd.

Reference Books

1. Williams E. Boyce and Richard C. DI Prima, 1967, *Elementary differential equations and boundary value problems*, New York, John Wiley and sons.

2. George F Simmons, 1974, *Differential equations with applications and historical notes*, Delhi, Tata McGraw Hill.

3. N.N. Lebedev, 1965, *Special functions and their applications*, New Delhi, Prentice Hall of India.

4. W.T. Reid, 1971, Ordinary Differential Equations, New York, John Wiley and Sons.

5. M.D.Raisinghania, 2001, Advanced Differential Equations, New Delhi, S. Chand & Company Ltd.

6. B.Rai, D.P.Choudary and H.I. Freedman, 2002, A Course in Ordinary Differential Equations, New Delhi, Narosa Publishing House.

Web Resources

1. https://www.iitg.ac.in/jiten/Extra/Coddrington.pdf

2. http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,

3. <u>http://www.opensource.org</u>, <u>www.mathpages.com</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	3	2	3	3	2	3	2	2	2	2
CO2	2	1	3	1	3	3	2	3	2	2	2	2
CO3	3	2	3	1	3	3	2	3	2	2	2	2
CO4	1	2	3	2	3	3	2	3	2	2	2	2
CO5	3	1	2	3	3	3	2	3	2	2	2	2
TOTAL	12	7	14	9	15	15	10	15	10	10	10	10
AVERAGE	2.4	1.4	2.8	1.8	3	3	2	2	2	2	2	2

3 – Strong, 2- Medium, 1- Low

SEMESTER I

ELECTIVE COURSE I: a) **NUMBER THEORY AND CRYPTOGRAPHY**

Course Code	т	т	D	ç	Cradita	Inst Hours	Total		Marks	
Course Code	L	I	Г	3	Creans	mst. nours	Hours	CIA	External	Total
MP231EC1	4		-	-	3	5	75	25	75	100

Pre-requisite:

Students should know the basic concepts of Number Theory.

Learning Objectives:

- 1. To gain deep knowledge about Number theory.
- 2. To know the concepts of Cryptography.

Course Outcomes

On the successful completion of the course, student will be able to:

1	understand quadratic and power series forms and Jacobi symbol.	K1 & K2
2	apply binary quadratic forms for the decomposition of a number into sum of sequences.	К3
3	determine solutions using Arithmetic Functions.	K3
4	calculate the possible partitions of a given number and draw Ferrer's graph.	K4
5	identify the public key using Cryptography.	K5 & K6

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Units	Contents	No. of Hours
Ι	Divisibility and Euclidean algorithm - Congruences, Euler's theorem, Wilson's Theorem, Chinese Remainder Theorem, Primitive roots Chapter 1: 1.2, Chapter 2: 2.1,2.3,2.8	15
II	Quadratic Residues – Quadratic Reciprocity – The Jacobi Symbol. Chapter 3: 3.1, 3.2, 3.3	15
ш	Arithmetic functions – The Mobius Inversion Formula – Multiplication of arithmetic functions. Chapter 4: 4.2, 4.3	15
IV	Linear Diophantine equations – Sum of Four and Five Squares – Sum of Fourth Powers - Sum of Two Squares. Chapter 5: 5.1,5.3 ,5.4	15
v	Public Key CryptographyPublic key Cryptography – Concepts of public key Cryptography – Modulararithmetic – RSA – Discrete logarithm – Elliptic curve CryptographyText book 2. Chapter 4: 4.1, 4.2, 4.3 Chapter 6: 6.1, 6.2	15
Self-St	udy Arithmetic functions	

Text Books

- 1. Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery (2006). *An Introduction to the Theory of Numbers*. United States: John Wiley & Sons.
- **2.** Neal Koblitz (1987). *A Course in Number Theory and Cryptography*. New York:Springer.

Reference Books

- 1. Hardy, G. H., & Wright E. M. (1975). *An Introduction to the Theory of Number*. United States: Oxford at the Clarendon Press.
- 2. David M. Burton (1989). *Elementary Number Theory*. Dubuque, Iowa: Wm. C. Brown Publishers
- 3. Tom. M. Apostol.(1998). *Introduction to Analytic Number Theory*. N e w D e l h i : Narosa Publishing House.
- **4.** Graham Everest andThomasWard(2008).*AnIntroductiontoNumberTheory*. NewYork: Springer.
- 5. Kenneth Ireland and Michael Rosen (1990). *A classical Introduction to Modern Number Theory*. NewYork: Springer.

Web Resources

- 1. <u>https://youtu.be/PkpFBK3wGJc</u>
- 2. <u>https://youtu.be/mIStB5X4U8M?list=PL-BD05SCClbag8KTPzaPzzggJ96aBsVkT</u>
- 3. https://ejionascu.ro/notes/ntbook.pdf
- 4. <u>https://cse.buffalo.edu/~xinhe/cse191/Classnotes/note07-1x2.pdf</u>
- 5. <u>https://www.maths.dur.ac.uk/users/athanasios.bouganis/entc1415/lecture_notes.pdf</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

		~	0010		_ ~			100			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	3	3	3	3	3
CO2	3	3	3	2	2	3	2	3	3	3	3
CO3	3	3	2	2	2	2	3	3	3	3	3
CO4	3	3	2	2	2	2	3	3	3	3	2
CO5	3	3	3	3	2	3	2	3	3	3	3
TOTAL	15	15	12	11	11	12	13	15	15	15	14
AVERAGE	3	3	2.4	2.2	2.2	2.4	2.6	3	3	3	2.8

3 – Strong, 2- Medium, 1- Low

SEMESTER – I

ELECTIVE COURSE I: b) GRAPH THEORY AND APPLICATIONS

Course Code	т	т	D	G	Credita	Inst Houng	Total		Marks	
Course Code	L	I	Г	3	Creans	mst. nours	Hours	CIA	External	Total
MP231EC2	4	1	-		3	5	75	25	75	100

Pre-requisite:

Students should know basic concepts of Graph Theory.

Learning Objectives:

- 1. To help students to understand various parameters of Graph Theory with applications.
- 2. To stimulate the analytical mind of the students, enable them to acquire sufficient knowledge and skill in the subject that will make them competent in various areas of mathematics.

	Course Outcomes								
On the s	On the successful completion of the course, student will be able to:								
1	recall the basic concepts of graph theory and know its various parameters.	K1							
2	understand the many results derived on the basis of known parameters.	K2							
3	apply the concepts to evaluate parameters for the family of graphs.	K3 & K5							
4	analyze the steps of various theorems and know its applications.	K1 &K4							
5	create a graphical model for the real-world problem using the relevant ideas.	K6							

K1-RememberK2- Understand K3 - Apply K4- Analyze K5–EvaluateK6 - Create

Units	Contents	No. of Hours
I	Trees Trees - Cut Edges and Bonds - Cut Vertices. Connectivity Connectivity – Blocks - Construction of Reliable Communication Networks.	15
Π	Euler Tours and Hamilton Cycles Euler Tours – Hamilton Cycles – The Chinese Postman Problem - Fleury's Algorithm.	15
III	Matchings Matchings. Edge Colourings Edge Chromatic Number – Vizing's Theorem.	15
IV	Independence sets and Cliques Independent Sets. Vertex Colourings Chromatic Number – Brook's Theorem – Hajos' Conjecture.	15
V	Planar Graphs Plane and Planar Graphs – Euler's Formula – Kuratowski's Theorem (statement only) – The Five Colour Theorem and Four Colour Conjecture.	15

Self Study	Graph Isomorphism, Distance, Radius, Diameter, The Incident and Adjacency
	Matrices, Vertex Degrees, Paths and Connection, Cycles.

Text book

J.A. Bondy, U.S.R. Murthy. 1976. Graph Theory with Applications .Macmillan Co., London.Chapter 2: 2.1 to 2.3

Chapter 3 Chapter 4: 4.1 to 4.3 Chapter 5: 5.1 Chapter 6: 6.1, 6.2 Chapter 7: 7.1 Chapter 8: 8.1 to 8.3 Chapter 9: 9.1, 9.3, 9.6

Reference Books

1. Gary Chartrand, Ping Zhang. 2006. Introduction to Graph Theory. McGraw Hill Education, India.

2. R. Balakrishnan, K. Ranganathan. 2000. Text Book of Graph Theory. Springer, New Delhi.

- 3. D.B.West. 2001. Introduction to Graph Theory. Prentice Hall, India.
- 4. J. Clark, D.A. Holton. 1995. A First look at Graph Theory. Allied Publishers, New Delhi.
- 5. F. Harary. 1969. Graph Theory. Addison Wesley, Reading Mass,.

Web Resources

- 1. <u>h tps://www.slideshare.net/mcsharma1/accounting-for-depreciation-1</u>
- 2. <u>h tps://www.slideshare.net/ramusakha/basics-of-financial-accounting</u>
- 3. <u>h tps://www.accountingtools.com/articles/what-is-a-single-entry-system.html</u>
- 4. <u>h</u> tps://www.coursera.org/learn/graphs
- 5. <u>h</u> tps://www.tutorialspoint.com/graph_theory/index.htm

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	3	2	2	3	2	3	3	3	3	2
CO2	2	2	3	3	2	2	2	3	3	2	2	2
CO3	3	3	3	3	1	2	2	3	3	3	3	2
CO4	3	3	3	1	2	2	2	3	3	2	3	2
CO5	3	3	3	2	1	2	2	3	3	3	3	2
TOTAL	13	14	15	11	8	11	10	15	15	13	14	10
AVERAGE	2.6	2.8	3	2.2	1.6	2.2	2	3	3	2.6	2.8	2

3 - Strong, 2- Medium, 1- Low

SEMESTER - I

ELECTIVE COURSE I C): PROGRAMMING IN C++

Course	L	Т	Р	S	Credits	Inst.	Total		Marks	
Code	Ľ	-	-	b	creatis	Hours	Hours	CIA	External	Total
MP231EC3	4	1	-	-	3	5	75	25	75	100

Pre-requisite:

Basics of Computer Programming

Learning Objectives:

- 1. To apply mathematical concepts in programming
- 2. To create programs and applications

Course Outcomes

On the s	In the successful completion of the course, student will be able to:							
1	understand and analyze the concepts of tokens, expressions and control structures	K1						
2	develop the knowledge in functions and arguments	K2						
3	solve simple programs using classes and objects in C++	К3						
4	apply the properties of constructors and destructors to solve programs	K4						
5	create programs and applications using C++	K5						

K1– RememberK2 - Understand K3 - Apply K4– AnalyzeK5–Evaluate K6 - Create

Units	Contents	No. of Hours
	Beginning with C++ & Tokens, Expressions and Control Structures	nouis
	What is C++ - Applications of C++ - A simple C++ Program – More C++	
	Statements – An Example with Class – Structure of C++ Program – Creating	
-	the Source File – Compiling and Linking – Token and Keyword – Identifiers	
I	and Constants – Basic Data Type – User-Defined Data Types – Control	15
	Structures	
	Chapter 2: 2.1 - 2.8	
	Chapter 3: 3.2 – 3.6, 3.24	
	Functions in C++	
	Introduction – The Main Function – Function Prototyping – Call by Reference	
п	- Return by Reference - Inline Functions - Defaults Arguments - const	15
	Arguments – Function Overloading – Friend and Virtual Functions – Math	15
	Library Functions	
	Chapter 4: 4.1 – 4.11	
	Classes	
	Introduction – C Structures Revisited – Specifying a Class – Defining	
III	Membership Functions – A C++ Program with Class – Making an Outside	15
	Function Inline – Nesting of Member Functions – Private Member Functions –	
	Arrays with a Class	

	Chapter 5: 5.1 – 5.9	
	Objects	
	Memory Allocation for Objects - Static Data Member - Static Member	
IV	Functions – Arrays of Objects – Objects as Function Arguments – Friendly	15
IV	Functions - Returning Objects - const Member Functions - Pointers of	15
	Members – Local Classes	
	Chapter 5: 5.10 – 5.19	
	Constructors and Destructors	
	Introduction – Constructors– Parameterized Constructors – Multiple	
v	constructors in a class - Constructors with Default Arguments - Dynamic	15
v	Initialization of Objects- Copy Constructor- Dynamic Constructors-	15
	Constructing Two–Dimensional Arrays– const Objects – Destructors	
	Chapter 6: 6.1 – 6.11	

Self-Study	Inline Function, Defaults Arguments, const Arguments, Arrays with a Class,
	Destructors

Text books

E. Balagurusamy (2008). *Object Oriented Programming with C++, Fourth Edition*. New Delhi: The McGraw–Hill Company Ltd.

Reference Books

1. V. Ravichandran (2006). *Programming with C++, Second Edition*. New Delhi: McGraw-Hill Company Ltd.

2. H. Schildt (2003). The complete Reference of C++.New Delhi: McGraw–Hill Company Ltd.

3. S. B. Lipman and J. Lafer (1998). C++ Primer. Addition Wesley, Mass.

4. Ashok N.Kamthane (2003). Object Oriented Programming with ANSI and

TURBO C++. Pearson Education(P) Ltd.

Web Resources

 $1. \underline{https://www.anandinstitute.org/pdf/Balaguruswamy\%20Object\%20Oriented\%20Programming\%20With\%20C++\%20Fourth\%20Edition\%20(3).pdf}$

2.<u>http://www.uml.org.cn/c%2B%2B/pdf/C%2B%2BComplete%20Reference%20(3rd%20Ed.).pd</u>

3. <u>https://zhjwpku.com/assets/pdf/books/C++.Primer.5th.Edition_2013.pdf</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

AND I ROOKAMME SI ECHIE OUTCOMES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	2	2	2	3	3	3	2	2	2
CO2	3	3	3	3	2	2	3	3	3	2	3	2
CO3	3	2	2	2	2	2	3	3	2	2	2	2
CO4	3	2	2	2	2	3	3	3	2	3	2	2
CO5	3	3	3	3	2	2	3	2	3	2	3	3
TOTAL	15	12	12	12	10	11	15	14	13	11	12	11
AVERAGE	3	2.4	2.4	2.4	2	2.2	3	2.8	2.6	2.2	2.4	2.2

3 – Strong, 2- Medium, 1- Low

SEMESTER I

Course	т	т	р	C	Credits	Inst.	Total	Marks			
Code	L	I	P	מ		Hours	Hours	CIA	External	Total	
MP231EC4	4	1	-	-	3	5	75	25	75	100	

ELECTIVE COURSE II: a) DISCRETE MATHEMATICS

Prerequisites: Basic Concepts in Algebra and Set Theory **Learning Objectives**

- 1. To learn the concepts of Permutations, Combinations, Boolean Algebra and Lattices
- 2. To motivate the students to solve practical problems using Discrete mathematics

Course Outcomes

CO1	remember and interpret the basic concepts in permutations and							
	combinations and distinguish between distribution of distinct and non- distinct objects	K4						
CO2	interpret the recurrence relation and generating functions and evaluate by using the technique of generating functions	K2, K3						
CO3	solve the problems by the principle of inclusion and exclusion	K3						
CO4	to prove the basic theorems in boolean algebra and to develop the truth table for a boolean expression	K2						
CO5	differentiate between variety of lattices and their properties	K4						

K1 – Remember K2 - Understand K3 - Apply K4 – AnalyseK5 – Evaluate K6 - Create

Unit	Contents	No. of Hours
Ι	Permutations and combinations-The rules of sum and product- Permutations - Combinations - Distribution of distinct objects- Distribution of non-distinct objects.	15
II	Generating functions - Generating functions for combinations - Recurrence relations -Linear recurrence relations with constant coefficients - Solution by the technique of generating functions	15
III	The principle of inclusion and exclusion - The general formula – Derangements	15
IV	Boolean Algebra: Introduction – Basic Theorems on Boolean Algebra – Duality Principle – Boolean Functions – Applications of Boolean algebra	15
V	Posets and Lattices: Introduction – Totally Ordered Set or Chain – Product Set and Partial Order Relation – Hasse Diagrams of Partially Ordered Sets – Lattice- Duality – Types of Lattices	15
	TOTAL	75

Self-Study Portion: Definition of Permutations and combinations

Textbooks:

1. Liu C. L (1968). *Introduction to Combinatorial mathematics*. New York: Mc Graw Hill Publications

Chapter 1: 1.1 to 1.6; Chapter 2: 2.1, 2.2; Chapter 3: 3.1 to 3.3

Chapter 4: 4.1 to 4.4;

2. J.K. Sharma (2011). *Discrete Mathematics*. Macmillan Publishers India Ltd. Chapter 13: 13.1 to 13.6; Chapter 14: 14.1 to 14.7

Reference Books

1. Kenneth H. Rosen. (2012) Discrete Mathematics and it's Applications, 7th Edition/ McGraw Hill Education, New York, Units I, II, III.

2. T. Veerarajan, Discrete Mathematics with Graph Theory and Combinatorics, Tata McGrawHills Publishing Company Limited, 7th Reprint, 2008

3. Kolman, Busby and Ross (2012). Discrete Mathematical Structures (6th Edition). New Delhi: PHI Learning Private Ltd.

4. Malik. D.S and Sen M.K (2010). Discrete Mathematics. Cengage Learning Private Ltd.

5. Dr. Deepankar Sharma (2015). Discrete Mathematics. Savera Publishing House

Web Resources

- 1. https://www.slideshare.net/praveenjigajinni/13-boolean-algebra
- 2. https://www.slideshare.net/rafayfarooq/combinatorics-15052419
- 3. https://s2.smu.edu/~mhd/2353f07/part1.ppt
- 4. https://www.slideserve.com/wayne-barron/combinatorics-powerpoint-ppt-presentation
- 5. https://www.khanacademy.org/computing/pixar/crowds/crowds-1/v/intro-crowds

AND PROGRAMME SPECIFIC OUTCOMES													
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO 4	PSO 5	
CO1	3	2	3	1	2	2	3	3	3	2	2	2	
CO2	3	3	3	1	2	3	2	3	3	2	3	2	
CO3	3	3	3	2	2	3	3	3	3	2	3	2	
CO4	3	2	3	2	3	3	3	3	3	2	3	2	
CO5	3	2	2	3	2	2	2	3	3	2	3	2	
TOTAL	15	12	14	9	11	13	13	15	15	10	14	10	
AVERAGE	3	2.4	2.8	1.8	2.2	2.6	2.6	3	3	2	2.8	2	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER I

ELECTIVE COURSE II: b) ANALYTIC NUMBER THEORY

Course	т	т	р	G	Credits	Inst.	Total	Marks			
Code	L	I	r	ð		Hours	Hours	CIA	External	Total	
MP231EC5	4	1	-	-	3	5	75	25	75	100	

Prerequisites: Knowledge of differential and integral calculus of real functions in several variables, convergence of series, (uniform)convergence of sequences of functions, basics of complex analysis

Learning Objectives

- 1. To understand Dirichlet multiplication, a concept which helps clarify Interrelationship between various arithmetical functions.
- 2 To understand some equivalent forms of the prime number theorem.

Course Outcomes

On the successful completion of the course, student will be able to:								
CO1	study the basic concepts of elementary number theory	K1, K2						
CO2	explain several arithmetical functions and construct their relationships	К3						
CO3	apply algebraic structure in arithmetical functions	К3						
CO4	demonstrate various identities satisfied by arithmetical functions	К2						
CO5	determine the application to $\mu(n)$ (%) and several equivalent form of prime number theorem	K4						

$K1-\mbox{Remember}\ K2$ - Understand K3 - Apply $K4-\mbox{Analyse}\ K5-\mbox{Evaluate}\ K6$ - Create

Unit	Contents	No. of Hours
I	UNIT-I: The Fundamental Theorem of Arithmetic. Chapter 1 : Section 1.1 - 1.8 Exercise Problems: Chapter1:1-11.	15
II	UNIT-II: Arithmetic Functions. Chapter 2: Sections 2.1 - 2.8. Exercise problems: Chapter 2:1 - 6.	15
ш	UNIT-III: Multiplicative Functions and Dirichlet Multiplication. Chapter 2: Sections 2.9 – 2.14. Exercise problems: Chapter 2:21 - 23, 25, 26.	15
IV	UNIT-IV: Averages of Arithmetical Functions. Chapter 3: Sections 3.1 - 3. 9. Exercise problems: Chapter 3: 1 - 4	15

v	UNIT-V: Partial sums of Dirichlet Product, Chebyshev's Functions – Equivalent forms of Prime Number Theorem. Chapter3: Sections:3.10,3.11, Chapter4:Sections4.1–4.4. Exercise problems: Chapter 4: 3, 4, 5, 8.	15
	75	
Self-Stud	ly: Definition of Permutations and combinations	

Textbooks:

Introduction to Analytic Number Theory–Tom M.A postol -Springer, International Student Edition.

Reference Books

1. Problems in Analytic Number Theory, M. RamMurty, Springer(2001)

2. Steps into Analytic Number Theory, Paul Pollack, Akash Singha

Roy ,Springer(2021)

Web Resources

http://mathworld.wolfram.com/ http://www.numbertheory.org/ https://planetmath.org/ https://services.math.duke.edu/~jonhanke/NumberTheory/ https://ocw.mit.edu/courses/mathematics/18-785-analytic-number-theory-spring-2003/

AND FROGRAMME SPECIFIC OUTCOMES												
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO 4	PSO 5
CO1	3	2	3	1	2	2	3	3	3	2	2	2
CO2	3	3	3	1	2	2	2	3	3	2	3	3
CO3	3	3	3	2	2	2	3	3	3	2	3	2
CO4	3	2	3	2	3	2	3	3	3	2	3	2
CO5	3	2	2	3	2	2	2	3	3	2	3	2
TOTAL	15	12	14	9	11	10	13	15	15	10	14	11
AVERAGE	3	2.4	2.8	1.8	2.2	2	2.6	3	3	2	2.8	2.2

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER I

ELECTIVE COURSE II: c) FUZZY SETS AND THEIR APPLICATIONS

Course	т	т	р	G	Credits	Inst.	Total		Marks	
Code	L	I		3	Creans	Hours	Hours	CIA	External	Total
MP231EC6	4	1			3	5	75	25	75	100

Prerequisites: Knowledge of graphs, relations, composition

Learning Objectives

- 1. To study about Fuzzy sets and their relations, Fuzzy graphs, Fuzzy Relations.
- 2. To gain knowledge on Fuzzy logic and laws of Fuzzy compositions

Course Outcomes

On the succe	ssful completion of the course, student will be able to:	
CO1	understand the definition of Fuzzy sets and its related concepts	K1, K2
CO2	define Fuzzy Graphs and can explain the concepts	К3
CO3	explain the concepts in Fuzzy sets and its relations	K3
CO4	discuss about Fuzzy logic	K2
CO5	analyze the compositions of Fuzzy sets.	K4

K1 – Remember K2 - Understand K3 - Apply K4 – AnalyseK5 – Evaluate K6 - Create

Unit	Contents	No. of Hours
Ι	Fundamental Notions. Chapter I: Sec.1to8	15
II	Fuzzy Graphs. Chapter II: Sec.10to18	15
III	Fuzzy Relations. Chapter II: Sec.19to29	15
IV	Fuzzy Logic. Chapter III: Sec.31to40(omitSec.37,38,41)	15
V	The Laws of Fuzzy Composition. Chapter IV: Sec.43to49	15
	TOTAL	75
Self-Study	y: Fundamental Notions.	l

Textbooks:

1.A. Kaufman, Introduction to the theory of Fuzzy sub sets, Vol. I, Academic Press, New York, (1975). **Reference Books**

- 1. 1. H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers, Chennai,(1996)
- 2. George J.Klir and Bo Yuan , Fuzzy sets and Fuzzy Logic-Theory and Applications, PrenticeHall India, New Delhi, (2001).

Web Resources

- 1. https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/fuzzylec.pdf
- 2. http://www.cs.toronto.edu/~dianeh/soft/fuzzy/fuzzy.html
- 3. http://www.cise.ufl.edu/research/FSR/learning.html
- 4. https://www.tutorialspoint.com/fuzzy_logic/index.htm
- 5. http://www.ganeshmj.org/book/book.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	2	2	3	3	3	2	2	3
CO2	3	3	3	1	2	3	2	3	3	2	3	3
CO3	3	3	3	2	2	3	3	3	3	2	3	3
CO4	3	2	3	2	2	3	3	3	3	2	3	3
CO5	3	2	2	3	2	2	2	3	3	2	3	3
TOTAL	15	12	14	9	10	13	13	15	15	10	14	15
AVERAGE	3	2.4	2.8	1.8	2	2.6	2.6	3	3	2	2.8	3

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

3 – Strong, 2- Medium, 1- Low

SEMESTER I

SPECIFIC VALUE ADDED COURSE -SCILAB

Course Code	Credits	Total Hours	Total Marks
MP231V01	1	30	100

Pre-requisite:

Basic knowledge of Matrices and Programming languages.

Learning Objectives:

- 1. To make the students aware of SCILAB programming environment.
- 2. To acquire the practical knowledge of SCILAB for solving the matrics, polynomials and differential equations.

Course Outcomes

On the successful completion of the course, student will be able to:

1	learn basic SCILAB programming.	K1
2	understand the basic mathematical operations using SCILAB software.	K2
3	execute SCILAB codes for vectors, matrices, plotting lines, polynomial and differential equations	К3
4	implement simple mathematical functions/ equations in numerical computation environment such as SCILAB.	K4
5	interpret and visualize simple mathematical functions and operations by using plots.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Units	Contents							
Ι	Login - Talking between SCILAB and the Editor - Basic Commands -Linear Algebra - Loops and Conditionals - Help in SCILAB. (Chapter 1:Sections 1.1 to 1.7)	6						
II	Matrices and Vectors - Solving Equations - Creating Matrices – Systems of Equations. (Chapter 2: Section 2.2)	6						
III	Plotting Lines and Data - Adding a Line - Hints for Good Graphs –Graphs - Function Plotting - Component Arithmetic - Printing Graphs -Saving Graphs. (Chapter 3: Sections 3.2, 3.3).	6						
IV	Evaluation of Polynomials – Polynomials - Linear Least Squares (Heath Computer Problem). (Chapter 6: Sections 6.2, 6.3, 6.4).	6						
V	Differential Equations - Scalar ODE"s - Order 2 ODE"s. (Chapter 8: sections 8.2)	6						

Self-study	Relation between Beta and Gamma functions- Applications
------------	---

Text book

Graeme Chandler and Stephen Roberts. (2002). *Scilab Tutorials for Computational Science*.

Reference Books

- 1. Sandeep Nagar. (2017). *Introduction to Scilab: For Engineers and Scientists*. Apress publisher, New York.
- **2.** Nair,A.S. (2012).*SCILAB (A free software to MATLAB)*. S. Chand Publishing, New Delhi.
- **3.** Anil Kumar Verma. (2018). SCILAB A Beginners Approach (1st Edison). Cengage India.
- 4. Surendran, K. S. (2007). SCILAB FOR DUMMIES(Version 2.6).

Web Resources

- 1. <u>https://www.scilab.org</u>
- 2. https://onlinecourses.swayam2.ac.in/aic20_sp38/preview
- 3. <u>https://www.udemy.com/course/scilab-the-first-course-beginners-to-intermediate/mediate</u>
- 4. <u>https://youtu.be/AzElVPaS71U</u>
- 5. https://youtu.be/RE3-HYNBFag

MAPPING FOR PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	2	3	2	3	2	2	3	2
CO2	3	3	2	2	3	2	2	3	2	2	3	2
CO3	3	3	2	3	2	2	2	3	2	3	3	2
CO4	3	3	2	2	2	3	2	3	2	2	3	2
CO5	3	3	3	3	3	2	2	3	2	3	3	3
TOTAL	15	15	11	12	12	12	10	15	10	12	15	11
AVERAGE	3	3	2.2	2.4	2.4	2.4	2	3	2	2.4	3	2.2

3 – Strong, 2- Medium, 1- Low

SPECIFIC VALUE- ADDED COURSE: CREATING DOCUMENTS USING La Tex

Course Code	Credits	Total Hours	Total Marks
MP231V02	1	30	100

Pre-requisite:

Basic understanding of Mathematics and related commands, Idea of Microsoft Word Learning Objectives:

- 1. To understand LaTeX, a document preparation system for high-quality typesetting.
- 2. To have hands on experience to become a user of LaTeX.

Course Outcomes

On the	successful completion of the course, student will be able to:	
1	typeset complex mathematical formulae using LaTeX	K2& K3
2	use tabular and array environments within LaTeX	K2 & K3
3.	prepare a LaTeX document, to make scientific article and project report	K3 & K6
4.	create automatic generation of table of contents, bibliographies	K6
5.	learn about graphics in LaTex	K2& K3

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Units	Contents	No. of Hours
I	Getting Started Preparing an Input File - The Input – Sentences and Paragraphs - The Document – Sectioning Chapter 2 - 2.1, 2.2 - 2.2.1, 2.2.2, 2.2.3	6
п	Getting Started Displayed Material - Running Latex Carrying On Changing the Type Style - Mathematical formulas – Some Common Structures - Mathematical Symbols Chapter 2- 2.2.4, 2.3 Chapter 3 - 3.1, 3.3- 3.3.1, 3.3.2	6
ш	Carrying On Arrays – Delimiters - Multiline Formulas – Putting One Thing Above Another - Spacing in Math mode - Defining Commands and Environments – Defining Commands - Defining Environments Chapter 3 - 3.3.3 to 3.3.7, 3.4 – 3.4.1, 3.4.2	6
IV	Carrying On Figures and Other Floating Bodies – Figures and Tables – Marginal Notes - Lining it up in Columns - The tabbing Environment- The tabular Environment Moving Information Around The Table of Contents - Cross-References – Bibliography and Citation	6

	Chapter 3 - 3.5 - 3.5.1, 3.5.2, 3.6 - 3.6.1, 3.6.2 Chapter 4 - Sections 4.1, 4.2, 4.3	
V	Designing it yourself Document and Page Styles- Document-Class Options, Page Styles - Title Page and Abstract, Customizing the Style, Line and Page Breaking – Line Breaking, Numbering, Centering and Flushing Chapter 6 - 6.1- 6.1.1 to 6.1.4, 6.2 - 6.2.1, 6.2.2, 6.3, 6.5	6
Self study	Carrying On - Defining Commands and Environments	Text

book

ok Lamport, L, 1994, LATEX A Document Preparation System, User's Guide and

Reference Manual (second edition), Addison-Wesley Publishing Company, New York **Reference Books**

- 1. Martin J. Erickson, Donald Bindner, 2011, *A Student's Guide to the Study, Practice, and Tools of Modern Mathematics*, CRC Press, Boca Raton, FL.
- 2. Griffits. D.F, Higham D.J, 1997, Learning Latex, Siam, Philadelpha
- 3. Kopka, Helmut, Daly P.W,2007, A *Guide to LATEX and Electronic Publishing*, (4th Edition), Addison Wesley Longman Limited.
- 4. Grätzer, G, 2007, *More Math Into LATEX*, (4th Edition), Springer Science + Business Media, LLC.

Web Resources

- 1. http://latex-beamer.sourceforge.net.
- 2. https://tobi.oetiker.ch/lshort/lshort.pdf
- 3. https://www.udemy.com/topic/latex/
- 4. <u>https://onlinecourses.swayam2.ac.in/aic20_sp17/preview</u>
- 5. <u>https://www.overleaf.com/learn/latex/Free_online_introduction_to_LaTeX_(part_1)</u>
- 6. <u>https://freecomputerbooks.com</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	2	3	2	3	2	2	3	2
CO2	3	3	2	2	3	2	2	3	2	2	3	2
CO3	3	3	2	3	2	2	2	3	2	2	3	2
CO4	3	3	2	2	2	3	2	3	2	2	3	2
CO5	3	3	3	3	3	2	2	3	2	2	3	3
TOTAL	15	15	11	12	12	12	10	15	10	10	15	11
AVERAGE	3	3	2.2	3	2.6	2.2	2	3	2	2	3	2.2

CORE COURSE IV: ADVANCED ALGEBRA

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total		Marks	
							Hours	CIA	External	Total
MP232CC1	5	1	-	-	5	6	90	25	75	100

Pre-requisite

Algebraic Structures Learning Objectives

1. To study field extension, roots of polynomials, Galois Theory, finite fields, division rings, solvability by radicals

2. To develop computational skill in abstract algebra.

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	exhibit a foundational understanding of essential concepts, including field	K1
	extensions, roots of polynomials, Galois Theory, and finite extensions	
2.	demonstrate knowledge and understanding of the fundamental concepts	K2
	including extension fields, Galois Theory, Automorphisms and Finite fields	
3.	compose clear and accurate proofs using the concepts of Field extension,	K3
	Galois Theory and Finite field	
4.	examine the relationships between different types of field extensions and their implications by applying algebraic reasoning	K4
5.	evaluate the validity of statements and theorems in field theory by providing proofs or counter examples	К5

K1 – Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Unit	Contents	No. of
S		Hours
Ι	Extension fields – Transcendence of e Chapter 5: Sections 5.1 and 5.2	18
II	Roots of Polynomials- More about roots Chapter 5: Sections 5.3 and 5.5	18
III	Elements of Galois theory Chapter 5: Section 5.6	18
IV	Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)	18
V	Solvability by radicals - A theorem of Frobenius - Integral Quaternions and the Four - Square theorem.	18

Chapter 5: Section 5.7 (omit Lemma 5.7.1, Lemma 5.7.2 and Theorem 5.7.1) Chapter 7: Sections 7.3 and 7.4

Self-study	1. Solvability by Radicals
	2. Questions related to the above topics, from various competitive examinations
	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved

Textbook

I.N. Herstein. 1975, *Topics in Algebra* (II Edition), Wiley Eastern Limited, New Delhi. **Reference Books**

1. M. Artin, 1997. Algebra, Prentice Hall of India.

2. P.B. Bhattacharya, S.K. Jain, and S.R. Nagpaul, 1997. *Basic Abstract Algebra* (II Edition)Cambridge University Press (Indian Edition).

3. I.S. Luther and I.B.S. Passi, 1999. *Algebra*, Vol. I–Groups(1996); Vol. II *Rings*, Narosa Publishing House , New Delhi.

4. D.S. Malik, J.N. Mordeson and M.K. Sen, 1997. *Fundamental of Abstract Algebra*, McGraw Hill(International Edition), New York.

5. N. Jacobson, *Basic Algebra*, Vol. I & II Hindustan Publishing Company, New Delhi. **Web Resources**

- 1. http://mathforum.org
- 2. http://ocw.mit.edu/ocwweb/Mathematics,
- 3. <u>http://www.opensource.org</u>
- 4. www.algebra.com
- 5. https://www.khanacademy.org/test-prep/v2-sat-math/x0fcc98a58ba3bea7:algebra-harder

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	3	1	3	2	3	3	3	3	2	2
CO2	3	3	2	2	3	3	3	3	3	3	2	2
CO3	3	2	2	2	2	3	3	3	3	3	3	2
CO4	3	3	3	1	1	3	3	3	3	2	3	3
CO5	3	2	3	1	2	3	3	3	3	3	3	3
CO6	3	3	3	1	2	3	3	3	3	3	3	3
TOTAL	17	14	16	8	13	17	18	18	18	14	16	15
AVERAGE	2.8	2.3	2.6	1.3	2.1	2.8	3	3	3	2.3	2.6	2.5

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CORE COURSE V: REAL ANALYSIS - II

Course Code	L	Τ	P	S	Credits	Inst. Hours	Total Hours		Marks	
								CIA	External	Total
MP232CC2	5	1	-	-	5	6	90	25	75	100

Pre-requisite: Elements of Real Analysis

Learning Objectives:

1. To introduce measure on the real line, Lebesgue measurability and integrability, Fourier Series and Integrals.

2. To get the in-depth study in multivariable calculus

Course Outcomes

the s	successful completion of the course, student will be able to:	
6.	recall and describe the basic concepts of measure, integration of functions, Fourier series on real line and multivariable differential calculus, implicit functions and extremism problems.	K1 &K2
7.	compare Boral measure with Lebesgue measure and the total derivatives with partial derivatives.	К3
8.	determine the matrix representation and Jacobian determinant of functions.	K3
9.	analyze the properties of measurable functions, Riemann and Lebesgue integrals, convergence of Fourier series and extrema of real valued functions.	K4
10.	test measurable sets and measurable functions.	K5

K1 – Remember; K2 - Understand K3 - Apply K4– AnalyzeK5 – Evaluate

Units	Contents	No. of Hours
I	Measure on the Real line - Lebesgue Outer Measure - Measurable sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability. Chapter - 2 Sec 2.1 to 2.5 (de Barra)	18
п	Integration of Functions of a Real variable - Integration of Non- negative functions - The General Integral - Riemann and Lebesgue Integrals. Chapter - 3 Sec 3.1,3.2 and 3.4 (de Barra)	18
III	Fourier Series and Fourier Integrals - Introduction - Orthogonal system of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients - The Riesz-Fischer Theorem - The convergence and representation problems for trigonometric series - The Riemann - Lebesgue Lemma - The Dirichlet Integrals - An integral representation for the partial sums of Fourier series - Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point – Cesarosummability of Fourier series- Consequences of Fejes's theorem - The Weierstrass approximation theorem. Chapter 11: Sections 11.1 to 11.15 (Apostol)	18
IV	Multivariable Differential Calculus - Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The	18

	total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's theorem for functions of R^n to R^1 Chapter 12: Section 12.1 to 12.5 and 12.7 to 12.14 (Apostol)	
v	Implicit Functions and Extremum Problems: Introduction - Functions with non-zero Jacobian determinants – The inverse function theorem-The Implicit function theorem-Extrema of real valued functions of severable variables- Extremum problems with side conditions. Chapter 13: Sections 13.1 to 13.7 (Apostol)	18

Self- Study	The convergence and representation problems for trigonometric series and the
	chain rule.

Text books

1. G. de Barra, 2000. *Measure Theory and Integration*, Reprint, New Age International Publisher, New Delhi. (for Units I and II).

2. Tom M. Apostol, 2002. *Mathematical Analysis*, 2nd Edition, 12th Reprint, Narosa

Publishing House Pvt. Ltd. New York, Addison-Wesley Publishing Company Inc. (for Units III, IV and V) **Reference Books**

1. Burkill ,J.C, 1951. The Lebesgue Integral, Cambridge University Press.

2. Munroe , M.E, 1971. Measure and Integration. Addison-Wesley Publishing House..

3. Roydon,H.L. and Fitzpatrick, 2016. *Real Analysis*, Fourth Edition, Pearson India Education Services Pvt. Ltd., Chennai.

4. Rudin, W., 2013. *Principles of Mathematical Analysis*, Third Edition, New York, McGraw Hill Education Pvt. Ltd.

5.Malik,S.C. and Savita Arora, 2017. *Mathematical Analysis*, Fifth Edition, New Age International Publishers, New Delhi.

6. Sanjay Arora and Bansi Lal, 1991. *Introduction to Real Analysis*, New Delhi, Satya Prakashan. **Web Resources**

1. <u>Lebesgue Measure -- from Wolfram MathWorld</u>

2. Measure and Integration 15 - Lebesgue Integral of nonnegative function - YouTube

3. Lecture 53-Fourier integrals - YouTube

4. <u>Multivariable Calculus | Khan Academy</u>

5. Differential Calculus of Several Variables - 1 - YouTube

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	1	3	2	3	3	2	3	2	1	2	2	
CO2	2	1	3	1	3	3	2	3	2	1	2	2	
CO3	3	2	3	1	3	3	2	3	2	1	2	2	
CO4	1	2	3	2	3	3	2	3	2	1	2	2	
CO5	3	1	2	3	3	3	2	3	2	1	2	2	
TOTAL	12	7	14	9	15	15	10	15	10	5	10	10	
AVERAGE	2.4	1.4	2.8	1.8	3	3	2	2	2	1	2	2	

^{3 –} Strong, 2- Medium, 1- Low

Course Code	L	т	Р	s	Credits	Inst. Hours	Inst Hours	Marks		
		-		5	creans		Hours	CIA	External	Total
MP232CC3	5	1	-	-	4	6	90	25	75	100

CORE COURSE VI: PARTIAL DIFFERENTIAL EQUATIONS

Pre-requisite

UG-level partial differential equations

Learning Objectives

1. To formulate and solve different forms of partial differential equations.

2. Solve the related application-oriented problems.

Course Outcomes

On	the successful completion of the course, students will be able to:	
1	recall the definitions of complete integral, particular integral, and singular integrals.	K1 & K2
2	learn some methods to solve the problems of non-linear first-order partial differential equations. homogeneous and non-homogeneous linear partial differential equations with constant coefficients and solve related problems.	K2 & K3
3	analyze the classification of partial differential equations in three independents variables – Cauchy's problem for a second-order partial differential equation.	K2 & K3
4	solve the boundary value problem for the heat equations and the wave equation.	K1 & K2
5	apply the concepts and methods in physical processes like heat transfer and electrostatics.	K2 & K3

K1 - Remember; **K2** - Understand; **K3** - Apply

Units	Contents	No. of Hours
Ι	Non-linear Partial Differential Equations of order one - complete integral, particular integral, singular integral - Compatible system of First Order Equations - Charpit's Method. Chapter 3: 3.1, 3.4 to 3.8B.	18
п	Homogeneous and Non Homogeneous Linear Partial Differential Equations with constant coefficients - Solution of Homogeneous and Non Homogeneous Linear Partial Differential Equations with constant coefficients - Method of finding Complementary Function of Linear Homogeneous Partial Differential Equations with constant coefficients - Particular Integral of Homogeneous Partial Differential Equations - General method of finding Particular Integral of Linear Homogeneous Partial Differential Equations. Chapter 4: 4.1 to 4.6, 4.12, 4.13.	18
III	Non Homogeneous Linear Partial Differential Equations with constant coefficients - Reducible and Irreducible Linear Differential operators - Reducible and Irreducible Linear Differential Equations with constant coefficients - Determination of Complementary Function of Reducible Non Homogeneous Linear Partial Differential Equations with constant coefficients with working rule - General Solution of Non Homogeneous Linear Partial Differential Equations	18

	with constant coefficients - Determination of Particular Integral of Non Homogeneous Linear Partial Differential Equations with constant coefficients. Chapter 5: 5.1 to 5.7, 5.10 to 5.13.	
IV	Classification of Partial Differential equations of second order - Classification of P.D.E. in three independent variables – Cauchy's problem for a second order P.D.E. Characteristic equation and Characteristic curves of the second order P.D.E. – Laplace transformation. Reduction to Canonical (or normal) forms. Chapter 8: 8.1 to 8.11.	18
V	Boundary Value Problem - Solution by Separation of variables - Solution of One- dimensional Wave Equation - Solution of Two-dimensional Wave Equation - Vibration of Circular Membrane - Solution of One-Dimensional Heat Equation - Solution of Two-Dimensional Laplace's Equation - Solution of two-dimensional heat equation Chapter 12: 12.1 to 12.8.	18

Self-study Simple portions, eg. definition, meaning, solving problems

Textbooks

1. M.D. Rai Singhania, 1988. *Advance Differential Equations*, (16thRevised and Corrected Edition). New Delhi: S. Chand and Company Ltd.

2. Sharma, A. K, 2010. Advanced Differential Equations, Discovery Publishing House.

Reference Books

- 1. Amaranth ,T. An Elementary Course in Partial Differential Equations. (2nd Edition). NewDelhi: Narosa Publishing House.
- 2. Ian Sneddon. 1957. Elements of Partial Differential Equations. International Edition.
- 3. Kevorkian, J, 2006. Partial Differential Equations. Springer International Edition.
- 4. Sharma, I. N., &Kehar Singh, 2009. Partial Differential Equations for Engineers and Scientists. (Second Edition). Narosa Publishing House PVT. LTD.
- 5. Lawrence C. Evans, 2009. Partial Differential Equations. (1st Indian Edition). Rhode Island, American Mathematical Society Providence.

Web Resources

- 1. <u>http://mathforum.org</u>,
- 2. <u>http://ocw.mit.edu/ocwweb/Mathematics</u>,
- 3. <u>http://www.opensource.org</u>,
- 4. <u>www.mathpages.com</u>
- 5. https://howellkb.uah.edu

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	3	2	3	3	3	3	3	2	2	1
CO2	2	1	3	1	3	3	3	3	3	2	2	1
CO3	3	2	3	1	3	3	3	3	3	2	2	1
CO4	1	2	3	2	3	3	3	3	3	2	2	1
CO5	3	1	2	3	3	3	3	3	3	2	2	1
TOTAL	12	7	14	9	15	15	15	15	15	10	10	5
AVERAGE	2.4	1.4	2.8	1.8	3	3	3	3	3	2	2	1

ELECTIVE COURSE III: a) MATHEMATICAL STATISTICS

Course Code	т	т	р	G	Credita	Inst Hours	Total		Marks	
Course Coue	L	I	Г	3	Creans	dits Inst. Hours	Hours	CIA	External	Total
MP232EC1	3	1	-	-	3	4	60	25	75	100

Pre-requisite

Knowledge in Probability Theory and Statistics

Learning Objectives

- 1. To enhance knowledge in mathematical statistics and acquire basic knowledge about various distributions.
- 2. To understand about mathematical expectations, moment generating function technique and the Central Limit Theorem.

Course Outcomes

On th	On the successful completion of the course, students will be able to:							
1	recall the basic probability axioms, conditional probability, random variables and	K1						
	related concepts							
2	learn the transformation technique for finding the p.d.f of functions of random variables and use these techniques to solve related problems	K2						
3	compute marginal and conditional distributions and check the stochastic independence	K3						
4	employ the relevant concepts of analysis to determine limiting distributions of random variables	K2						
5	design probability models to deal with real world problems and solve problems involving probabilistic situations.	K3						

K1 - Remember; K2 - Understand; K3– Apply

Units	Contents	No. of Hours
I	Distributions of Functions of Random Variables – Sampling Theory – Transformations of Variables of the Discrete Type – Transformations of Variables of the Continuous Type – The t and F Distributions Chapter 4: $4.1 - 4.4$	12
II	Limiting Distributions – Stochastic Convergence – Limiting Moment Generating Functions – The Central Limit Theorem Chapter 5: 5.1 – 5.4	12
ш	Estimation – Point Estimation – Measures of Quality of Estimators – Confidence Intervals for Means – Confidence Interval for Difference of Means – Confidence Interval for Variances Chapter 6: 6.1 – 6.5	12
IV	Statistical Hypothesis – Some Examples and Definitions – Certain Best Tests – Uniformly Most Powerful Tests – Likelihood Ratio Tests Chapter 7: 7.1 – 7.4	12
V	Other Statistical Tests – Chi-Square Tests – The Distributions of Certain Quadratic Forms – A Test of Equality of Several Means – Noncentral 3 ² and Noncentral F	12

Chapter 8: 8.1 – 8.4

Self-study Sampling Theory

Textbook

Robert V. Hogg and Allen T. Craig, 1978. *Introduction to Mathematical Statistics*, Fourth Edition, New York: Macmillan Publishing Co

Reference Books

1.Kapur, J.N., and Saxena, H.C, 2010. *Mathematical Statistics*, 12thEdition, S. Chand & Co. 2.KadarkaraiThangam, K., and Subas Chandra Bose. A, 1995. *Probability and Statistics*, 1stEdition, Jeyalakshmi Publishers.

3. Morris H. DeGroot, 1975. *Probability and Statistics*, Addison Wesley Publishing Company.

4.Suddhendu Biswass.,and Sriwastav, G.L, 2011. *Mathematical Statistics*, Narosa Publishing House.

5. Murthy, T.S.R, 1995. *Probability and Statistics*, 1stEdition, I.K. International Publishing House.

Web Resources

1. <u>https://onlinecourses.nptel.ac.in/noc21_ma74/preview</u>

2. https://users.encs.concordia.ca/~doedel/courses/comp-233/slides.pdf

3. <u>https://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf</u>

4. <u>http://www.uop.edu.pk/ocontents/Book.pdf</u>

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	3	3	3	1	2	3	1	2	3
CO2	3	2	3	2	2	2	3	2	2	3	2	3
CO3	3	3	2	2	3	3	3	2	2	3	3	2
CO4	3	3	2	3	2	2	3	3	2	3	3	2
CO5	2	2	3	3	3	2	2	2	2	2	2	3
TOTAL	12	12	13	13	14	12	12	11	11	12	12	13
AVERAGE	2	2	2	3	3	2	2	2	2	2	2	3

ELECTIVE COURSE III: b) STATISTICAL DATA ANALYSIS USING R PROGRAMMING

Course Code	L	Т	P	S	Credits	Inst. Hours	Total Hours	Marks		
								CIA	External	Total
MP232EC2	4	-	-	-	3	4	60	25	75	100

Pre-requisite:

Students should know basic skills of computer.

Learning Objectives:

- 1. The basics of statistical computing and data analysis.
- 2. How to use R for analytical programming.

Course Outcomes

On the successful completion of the course, students will be able to:									
1.	recall R and its development history	K1							
2.	demonstrate how to import and export data with R	K2 & K4							
3.	explain discrete distributions	K3							
4.	apply various concepts to write programs in R	K3 & K5							
5.	apply estimation concepts in R programming	K2 & K3							

K1 - Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

Units	Contents	No. of Hours
Ι	Statistical Software R - R and its development history – Structure of R - installation of R Chapter 1: 1.1, 1.2, 1.3	12
II	Descriptive Statistics – Basics - Excursus: Data Import and Export with R – Import of ICU-Dataset Chapter 2: 2.1, 2.2, 2.3	12
III	Colors and Diagrams – Colors - Excursus: Export of diagrams - Diagrams Chapter 3: 3.1, 3.2, 3.3	12
IV	Probability Distributions – Discrete Distributions – Continuous Distributions Chapter 4: 4.1 and 4.2	12
V	Estimation – Introduction – Point Estimation Chapter 5: 5.1 and 5.2	12

Self-study	R and its development history	
------------	-------------------------------	--

Text Book

1. Matthias Kohl, 2015. *Introduction to statistical data analysis with R*, (First edition), bookboon.com, The e Book company.

Reference Books

- 1. Torsten Hothorn, Brian Everitt S, 2014. *A Handbook of Statistical Analyses using R*, (Third edition), CRC PRESS, Taylor & Francis Group
- 2. Purohit S.G., Gore S.D., and Deshmukh S.R., 2015. *Statistics using R*, (Second edition), Narosa Publishing House, New Delhi.
- 3. Crawley, M. J, 2006. *Statistics An introduction using R*, (Second edition), John Wiley, London 32.
- 4. Verzani J, 2005. *Using R for Introductory Statistics*, (Second edition), Chapman and Hall /CRC Press, New York
- 5. Braun W. J., and Murdoch D. J, 2021. *A First Course in Statistical Programming with R*, (Third edition), Cambridge University Press, New York.
- 6. Dalgaard P, 2008. Introductory Statistics with R, (Second edition), Springer.
- 7. Gardener M, 2012. *Beginning R: The Statistical Programming Language*, Wiley Publications.

Web Resources

- 1. https://www.udemy.com/course/statistics-using-r/
- 2. <u>https://sims.strathmore.edu/executive-education/r-programming/</u>
- 3. https://www.educba.com/statistical-analysis-with-r/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3	2	3	3	3	2	3	2
CO2	3	3	2	2	2	3	2	3	3	2	3	2
CO3	3	3	2	2	2	2	3	3	3	3	3	2
CO4	3	3	2	2	2	2	3	3	3	3	2	2
CO5	3	3	2	3	2	3	2	3	3	2	3	2
TOTAL	15	15	10	11	11	12	13	15	15	12	14	10
AVERAGE	3	3	2	2.2	2.2	2.4	2.6	3	3	2.4	2.8	2

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

ELECTIVE COURSE III: c) PROGRAMMING with C++ PRACTICAL

Course Code	т	т	Р	S	Credita	Inst. Hours	Total	Marks			
	L	I			Creans	mst. nours	Hours	CIA	External	Total	
MP232EC3	-	2	2	I	3	4	60	25	75	100	

Pre-requisite

Basic functionality of computer programs.

Learning Objectives

- 1. To introduce a higher-level language C++ for hands-on experience on computers.
- 2. Adhere to best practices and coding standards in C++ programming

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	understand about object-oriented programming and learn how to store one object inside another object	K2, K3
2.	gain knowledge about the capability to store information together in an object.	K1
3.	understand the capability of a class to rely upon another class.	K1, K4
4.	analyze the process of exposing the essential data to the outside of the world and hiding the low-level data	K4
5.	understand about constructors which are special type of functions	K2

K1-RememberK2 - Understand K3 - Apply K4- Analyze

Units	Contents	No. of Hours
Ι	Vector Representation using Class - Sum of two types of objects - String Class	12
II	Matrix Operations using Operator Overloading - Overloaded = = Operator for String Comparison	12
III	Conversion from Polar to Rectangle and Rectangle to Polar - Friend Function	12
IV	Virtual Function - Extending Shape class to find area of circle	12
V	Text Process - Text file process - Creating data file with name and phone numbers - Creation and Process of telephone files	12

Self-study	Matrix Operations using Operator Overloading

Textbook

Balagurusamy, 1999. Object Oriented Programming with C++, Tata McGraw Hill, New Delhi.

Reference Books

- 1. Ravi chandran.V. 2006. *Programming with C++*, Second Edition Tata McGraw-Hill, NewDelhi.
- Devi Prasad, 2006, An Introduction to Numerical Analysis (3rd edn)Narosa Publishing House, New Delhi,.
- 3. Ravichandran.D. 1996. *Programming with C++*, Tata McGraw Hill, New Delhi.
- 4. Conte and de Boor, 1990. Numerical Analysis, McGraw Hill, New York.
- 5. John H. Mathews, 2000. *Numerical Methods for Mathematics*, Science and Engineering(2nd Edn.), Prentice Hall, New Delhi.

Web Resources

- 1. <u>https://www.prebytes.com</u>
- 2. <u>https://www.oreilly.com</u>
- 3. https://www.ctae.ac.in
- 4. https://www.udemy.com
- 5. https://www.geeksforgeeks.org

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	2	2	2	2	2	3	2	2	3
CO2	3	2	2	2	2	1	2	1	2	2	1	2
CO3	3	2	2	3	2	2	2	2	2	2	2	2
CO4	2	2	2	1	2	2	2	2	2	2	2	1
CO5	2	2	2	1	1	2	2	1	2	2	1	1
TOTAL	12	10	10	9	9	9	10	8	11	10	8	9
AVERAGE	2.4	2	2	1.8	1.8	1.8	2	1.6	2.2	2	1.6	1.8

Course Code	т	т	Р	S	Credits	Inst Hours	Total	Marks			
	L	I	Г			mst. nours	Hours	CIA	External	Total	
MP232EC4	3	1	I	1	3	4	60	25	75	100	

ELECTIVE COURSE IV: a) OPERATIONS MODELING

Pre-requisite

Knowledge of probability distributions and statistics

Learning Objectives

1. To analyze different situations in the industrial/ business scenario involving limited resources

2. To finding the optimal solution within constraints.

Course Outcomes

On the s	On the successful completion of the course, students will be able to:							
1	build and solve Transportation and Assignment problems using appropriate method	K1						
2	learn the constructions of network and optimal scheduling using CPM and PERT	К2						
3	ability to construct linear integer programming models and solve linear integer programming models using branch and bound method	К3						
4	understand the need of inventory management.	K2						
5	to understand basic characteristic features of a queuing system and acquire skills in analyzing queuing models	К3						

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents	No. of
		Hours
	Transportation Models and its Variants: Definition of	
Ι	the Transportation Model–Non-Traditional Transportation Model–	12
	Transportation Algorithm – The Assignment Model.	
	Chapter 5: Sections 5.1, 5.2, 5.3, 5.4. Exercise problems.	
	Network Analysis: Network Definitions- Minimal	
II	Spanning Tree Algorithm–Shortest Route Problem–	12
	MaximumFlowModel – CPM – PERT.	
	Chapter 6: Sections 6.2, 6.3, 6.4, 6.5, 6.7. Exercise problems.	
	Inventory Theory: Basic Elements of an Inventory Model -	
III	Deterministic Models: Single Item Stock Model With And Without	12
	Price Breaks –Multiple Items Stock Model With Storage Limitations	
	Chapter11–Sections11.1,11.2,11.3,	
IV	Probabilistic Models: Continuous Review Model- Single Period	12
	Models. Chapter16–Sections16.1, 16.2, 16.3, Exercise problems.	
V	Queuing Theory: Basic Elements of Queuing Model -Role of Poisson	12
	and Exponential Distributions- Pure Birth and Death Models -	

Specialised	Poisson	Queues- $(M/G/1)$:GD/ ∞/∞)-	Pollaczek -
Khintechine I	Formula. Cl	napter 17: Sections 17.2, 17.3,	17.4, 17.6, 17.7.
Exercise prob	lems.		

Self-study	Exercise Problems
------------	-------------------

Textbooks

1. Hamdy A. Taha, *Operations Research*(Sixth Edition), Prentice Hall of India PrivateLimited ,New Delhi.

2. Hamdy A .Taha, *Operations Research*(Third Edition), Prentice Hall of India PrivateLimited ,New Delhi.

Reference Books

- 1. Pathak, H.K, Dr. Pradeep, K. Joshi and C. Sharma ,Shree *Operations Research*, Shiksha Sahitya Prakashan Publication, Reprint2022-23.
- 2. Srinivasan Operations Research : Principles and Applications, Second Edition, Eastern Economy Edition, PHI.
- 3. Hamdy A. Taha, *Operations Research* (seventh Edition) Prentice Hall of India Private Limited, New Delhi.
- 4. Kanti Swarup, P.K. Gupta and Man Mohan, *Operations Research*, 13th edition, Sultan. Chand and Sons, 2007.
- 5. R.K. Gupta, Operations Research, Krishna Prakashan Media, 1992.

Web Resources

1. https://en.wikipedia.org/wiki/Operations_ research

2.https://www.techtarget.com/whatis/definition/operations-research-OR

- 3.https://www.britannica.com/topic/operations-research
- 4.https://www.springer.com/journal/12351

5.https://www.or.ncsu.edu/about/what-is-operations-research/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	3	3	3	1	2	3	1	2	3
CO2	3	2	3	3	2	2	3	2	2	3	2	3
CO3	3	3	2	2	3	3	3	2	2	3	3	2
CO4	3	3	2	3	2	2	3	3	2	3	3	2
CO5	2	2	3	3	3	2	2	2	3	2	2	3
TOTAL	12	12	13	14	14	12	12	11	12	12	12	13
AVERAGE	2	2	2	3	3	2	2	2	2	2	2	3

SEMESTER – II ELECTIVE COURSE IV: b) MATHEMATICAL PYTHON

Pre-requisite:

Course	L	Т	Р	S	Credits	Inst. Hours	Total		Marks	
Code							Hours	CIA	External	Total
MP232EC5	3	-	1	-	3	4	60	25	75	100

Students should know basic skills of computer

Learning Objectives:

1. To familiarize the students with Python programing for Mathematics.

2. To train them to develop programs and create functions for Mathematics in Python.

K1-Remember K2- Understand K3 – Apply K4- Analyze K5 - Evaluate

Course Outcomes

On the	successful completion of the course, student will be able to:	
1	acquire knowledge on Python and learn to run the program.	K1
2	understand and discuss about different data types and flow control statements.	K2 & K4
3	write programs in python using Lists Tuples, Sets and Dictionaries	К3
4	understand For and While loops and conditional statements.	K3 & K5
5	creates Functions and Arrays in Python	K2 & K3

Units	Contents	No. of Hours
Ι	Python Getting started: Installing Python, different tabs in Jupiter notebook, Magics, Markdown Sec: 1.1, 1.2 (1.21 - 1.27)	12
Π	Programming Python: Python data types, Containers, Controlling the flow Sec: $2.1 - 2.6$, $3.1 - 3.4$, $4.1 - 4.8$	12
III	Packaging and reusing the code – Functions, Modules, Comprehensions, General expression and Comments Sec: 5.1 – 5.5	12
IV	Numerical Computing: Numpy – Array creation, Array properties, Array operation, Array indexing and slicing, Indexing with integer Arrays and Boolean Arrays. Sec: 6.1 – 6.6	12
V	Differential Equations: First order differential equations, Higher Order differential equations, Systems of equations Sec: 8.1 – 8.3	12

Self – Study Installing Python, Array Operations

Text book

Scientific and Mathematical Computing Using Python - Adam Cunningham University at Buffalo Department of Biostatistics

Reference Books

- 1. Kenneth A Lambert, Fundamentals of Python First programs 2nd Edition Cengage, Learning India.
- 2. Amit Saha, Doing Math with Python, No starch Press,
- 3. E. Balgurusamy, Problem solving and Python programming, Tata McGraw Hill.
- 4. Mark Lutz, Learning Python,5th Edition O'Reilly Media
- 5. Paul Barry Head First Python, 2nd Edition O'Reilly Media

Web Resources

- 1. <u>https://www.udemy.com/course/scientific-computing-with-numpy/</u>
- 2. <u>https://www.msuniv.ac.in/images/e-</u> content/6.Computer%20%20Fundamentals%20and%20Office%20Automation.pdf
- 3. https://web.pdx.edu/~gjay/teaching/mth271_2020/pdf/OER.pdf
- 4. <u>https://library.oapen.org/bitstream/id/56d27e73-e92a-4398-8198-239be7aacc93/2020_Book_IntroductionToScientificProgra.pdf</u>
- 5. <u>https://patrickwalls.github.io/mathematicalpython</u>
- 6. <u>https://fliphtml5.com/ntsfv/tmnj/basic/301-336</u>
- 7. https://www.oreilly.com/library/view/learning-python-5th/9781449355722/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	2	2	3	2	3	3	3	2	3	2	
CO2	3	3	2	2	2	3	2	3	3	2	3	2	
CO3	3	3	2	2	2	2	3	3	3	3	3	2	
CO4	3	3	2	2	2	2	3	3	3	3	2	2	
CO5	3	3	2	3	2	3	2	3	3	2	3	2	
TOTAL	15	15	10	11	11	12	13	15	15	12	14	10	
AVERAGE	3	3	2	2.2	2.2	2.4	2.6	3	3	2.4	2.8	2	

3 - Strong, 2- Medium, 1- Low

ſ	Course Code	т	т	р	ç	Cradita	Inst Houng	Total		Marks	
	Course Coue	L	I	Г	ð	Creans	Inst. Hours	Hours	CIA	External	Total
	MP232EC6	3	1	I	-	3	4	60	25	75	100

ELECTIVE COURSE IV: c) NEURAL NETWORKS

Pre-requisite

Familiarity with linear algebra, multivariate calculus and probability theory

Learning Objectives

- 1. To know the main fundamental principles and techniques of neural network systems and investigate the principal neural network models and applications.
- 2. Apply neural networks to classification and generalization problems.

Course Outcomes

On the successful completion of the course, students will be able to:							
1	understand and analyze different neutron network models	K2, K4					
2	understand the basic ideas behind most common learning algorithms	K2					
	for multilayer perceptions, radial basis function networks.						
3	describe Hebb rule and analyze back propagation algorithms with	K1, K4					
	examples						
4	study convergence and generalization and implement common learning	K3					
	algorithms.						
5	study directional derivatives and necessary conditions for optimality	K5					
	and to evaluate quadratic functions.						

K1– RememberK2 - Understand K3 - Apply K4– AnalyzeK5–Evaluate K6 - Create

Units	Contents	No. of Hours
Ι	Neuron Model and Network Architectures: Mathematical NeuralModel-Network Architectures- Perceptron - Hamming Network-Hopfield Network-Learning Rules.	12
II	Perceptron Architectures: Perceptron Architectures and LearningRules with proof of convergence-Supervised Hebbian Learning-Linear Associator.	12
III	Supervised Hebbian Learning: The Hebb Rule-Pseudoinverse rule- Variation of Hebbian Learning-Back Propagation - Multilayer Perceptrons.	12
IV	Back Propagation : Back Propagation algorithm-convergence and Generalization-Performances surfaces and optimum points-Taylor series.	12

	Performance surface and performance optimizations: Directional	
V	derivatives-Minima-Necessary conditions for optimality - Quadratic	12
	functions-Performance optimizations-Steepest Descent Newton's	
	method-Conjugate Gradient.	

Self-study The Hebb Rule, Pseudoinverse rule and Variation of Hebbian Learning

Textbook

Martin T. Hagan, Howard B/Demuth and Mark Beale, 2002, Neural

Network Design, Vikas Publishing House, New Delhi,

Reference Books

- 1. James A. Freeman, David M. Skapura, 2003. *Neural Networks Algorithms, Applications and Programming Techniques*, Pearson Education.
- 2. Bishop, C. M, 2006. Pattern Recognition and Machine Learning, Volume 1, Springer.
- 3. Duda, R. O., Hart, P. E., & Stork, D. G, 2012. *Pattern Classification*, Volume 1 (2nd Edition), Wiley.
- 4. Hagan, M. T., Demuth, H. B., & Beale, M. H, 2014. *Neural Network Design*, Volume 1 (2nd Edition), Martin Hagan.
- 5. Marsland, S. 2009. *Machine Learning: An Algorithmic Perspective*, Volume 1, CRC Press. **Web Resources**

1. https://www.coursera.org/learn/neural-networks-deep-learning

- 2. http://neuralnetworksanddeeplearning.com/
- 3. https://ai.googleblog.com/
- 4. https://nptel.ac.in/courses/117/105/117105084/
- 5. https://nptel.ac.in/courses/106/106/106106184/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	2	2	2	2	2	2	3	2	2	3
CO2	3	2	2	1	1	1	2	1	2	2	1	2
CO3	1	2	2	3	1	2	2	1	2	2	2	2
CO4	2	2	1	1	2	2	1	2	1	2	2	1
CO5	2	2	2	1	1	1	2	1	2	2	1	2
TOTAL	11	9	9	8	7	8	9	7	10	10	8	10
AVERAGE	2.2	1.8	1.8	1.6	1.4	1.6	1.8	1.4	2	2	1.6	2

SKILL ENHANCEMENT COURSE I: MODELING AND SIMULATION WITH EXCEL

Course Code	т	т	D	ç	Cradita	Inst. Hours	Total		Marks	
Course Coue	L	I	Г	3	Creans	Inst. nours	Hours	CIA	External	Total
MP232SE1	4	1	-	-	2	4	60	25	75	100

Pre-requisite

Students should know about the fundamental skills of a computer and some useful shortcuts. **Learning Objectives**

1. To know about modifying a spreadsheet and workbook.

2. To understand the concept of data analysis tools and data analysis for two data sets.

Course Outcomes

On the	On the successful completion of the course, students will be able to:					
1.	1.learn the spreadsheet and workbook.K					
2.	understand the types of charts and graphs.	K2 & K4				
3.	apply the custom data formats and layouts.	K3 & K4				
4.	analyze the data with Excel.	K4 & K5				
5.	create spreadsheets, workbooks and charts.	K2 &K6				

K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6 - Create

Units	Contents	No. of
		Hours
Ι	Introduction to Spreadsheet Modeling Feng Shui of Spreadsheets, Spreadsheet Makeover – Julia's Business Problem-A Very Uncertain Outcome, Ram's Critique, Julia's New and Improved Workbook. Chapter 1: 1.5, 1.6	12
II	Presentation of Quantitative Data: Data Visualization Introduction, Data Classification, Data Context and Data Orientation, Data Preparation Advice Chapter 2: 2.1, 2.2, 2.3	12
ш	Types of Charts and Graphs – Ribbons and the Excel Menu System, Some Frequently Used Charts, Specific Steps for Creating a Chart, An Example of Graphical Data Analysis and Presentation, Example – Tere's Budget for the 2 nd Semester of college, Collecting Data, Summarizing Data, Analyzing Data, Presenting Data. Chapter 2: 2.4, 2.5	12
IV	Analysis of Quantitative Data Introduction, Data Analysis, Data Analysis Tools, Data Analysis for Two Data Sets – Time Series Data: Visual Analysis, Cross-Sectional Data: Visual Analysis, Analysis of Time Series Data: Descriptive Statistics, Analysis of Cross-Sectional Data: Descriptive Statistics. Chapter 3: 3.1, 3.2, 3.3, 3.4	12

 Presentation of Qualitative Data – Data Visualization Introduction, Essentials of Effective Qualitative Data Presentation – Planning for Data Presentation and Preparation, Data Entry and Manipulation – Tools for Data Entry and Accuracy, Data Transposition to Fit Excel, Data Conversion with the Logical IF, Data Conversion of Text from Non-Excel Sources Chapter 4: 4.1, 4.2, 4.3.
--

Self-study Spreadsheets, Data Analysis

Textbook

Hector Guerrero, 2019, Excel Data Analysis: Modeling and Simulation (Second Edition), Springer Nature Switzerland AG, Switzerland.

Reference Books

1. Curtis D. Frye, 2010. Microsoft Excel 2010. Microsoft Press, Washington.

2. Joan Lambert and Curtis Frye, 2022. Microsoft Excel Step by Step, Pearson Education.

3. Wayne Winston, 2022. Microsoft Excel Data Analysis and Business Modeling, Pearson Education.

4. Chandan Sengupta, 2004. Financial Modeling Using Excel and VBA, John Wiley & Sons, Canada.

5. Balaji, K., 2023. Modeling with Excel, Scientific International Publishing House.

Web Resources

1. https://dspace.agu.edu.vn/handle/agu_library/13428

2. <u>https://www.tandfonline.com/doi/abs/10.1080/00220485.2015.1029177</u>

3. https://www.researchgate.net/publication/293135019_Excel_data_analysis_Modeling_and_simu

lation

4. https://www.theexcelexperts.com/modelling-simulation/

5. https://www.geeksforgeeks.org/introduction-to-ms-excel/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	2	3	3	2	3	2	2	2	3
CO2	3	2	2	3	3	3	2	3	3	2	2	3
CO3	3	3	3	3	3	3	2	3	3	3	2	3
CO4	3	3	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3
TOTAL	15	13	13	14	15	15	12	15	14	13	11	15
AVERAGE	3	2.6	2.6	2.8	3	3	2.4	3	2.8	2.6	2.2	3

3–Strong,2-Medium,1-Low

SEMESTER – I & II

LIFE SKILL TRAINING – I ETHICS

Course	т	т	D	G	Credits	Inst. Hours	Total Houng		Marks	
Code	L	1	r	3	Creans	mst. nours	Total Hours	CIA	External	Total
PG23LST1	1				1	1	15	-	50	100

Prerequisites: Value education-its purpose and significance in the present world

Learning Objectives

- 1. To familiarize students with values of the individual, society, culture, one's own health and life philosophy,
- To impart knowledge of professional ethical standards, codes of ethics, obligations, safety, rights, and other worldwide challenges.

Course Outcomes	On completion of this course the student will be	
	able to	
CO1	understand deeper insight of the meaning of their existence.	K1
CO2	recognize the philosophy of life and individual qualities	K2
CO3	acquire the skills required for a successful personal and	K3
	professional life.	
CO4	develop as socially responsible citizens.	K4
CO5	create a peaceful, communal community and embrace unity.	K3

Unit	Contents	No. of Hours
Ι	Goal Setting: Definition - Brainstorming Session – Setting Goals – Few components of setting goals.	3
Π	Group Dynamics: Definition - Nature of Groups – Types of Groups – Determinants of group behavior	3
III	Conflict Resolution: Definition – What is a conflict resolution – Why should conflicts be resolved? - Lessons for life	3
IV	Decision Making: Definition – 3C's of decision making – Seven Steps to effective decision making – Barriers in effective decision making	3
V	Anger Management: Effects of anger – Tips to reduce anger – Anger warning signs – Identify your triggers – Ways to cool down your anger.	3
	TOTAL	15
	y Portion: Salient values for life, Human Rights, Social Evils and how to tic living, Duties and responsibilities.	

Textbooks

Life Skill Training – I Ethics, Holy Cross College (Autonomous), Nagercoil

Reference Books

- 1. Holy Cross College (Autonomous), Nagercoil (2007). Foundation Course Life's Challenges. Sipca Computers.
- 2. Mathew, Sam (2010). Self Help Life Book. Opus Press Publisher.
- 3. Swati Mehrotra. (2016). Inspiring Souls Moral Values and Life Skills (1st ed.) [English]. Acevision Publisher Pvt. Ltd.
- 4. Irai Anbu, v. (2010, August). Random Thoughts (1st ed.) [English]. THG Publishing Private Limited, 2019.
- 5. Holy Cross College (Autonomous), Nagercoil (2007). Foundation Course Life's
- 5. Challenges. Sipca Computers.

Web Resources

- 1. https://positivepsychology.com/goal-setting-exercises/
- 2. https://www.gov.nl.ca/iet/files/CCB_GroupDynamicsGuide.pdf
- 3. https://en.wikipedia.org/wiki/Conflict_resolution
- 4. https://asana.com/resources/decision-making-process
- 5. <u>https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/anger-</u> management/art-20045434

Content addressed with Employability
Content addressed with Entrepreneurship